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ABSTRACT

Motivation: The slow growth of expert-curated databases compared
to experimental databases makes it necessary to build upon highly
accurate automated processing pipelines to make the most of the
data until curation becomes available. We address this problem
in the context of protein structures and their classification into
structural and functional classes, more specifically, the structural
classification of proteins (SCOP). Structural alignment methods like
Vorolign already provide good classification results, but effectively
work in a 1-Nearest Neighbor mode. Model-based (in contrast to
instance-based) approaches so far have been shown to be of limited
values due to small classes arising in such classification schemes.
Results: In this article, we describe how kernels defined in terms
of Vorolign scores can be used in SVM learning, and explore
variants of combined instance-based and model-based learning, up
to exclusively model-based learning. Our results suggest that kernels
based on Vorolign scores are effective and that model-based learning
can yield highly competitive classification results for the prediction
of SCOP families.

Availability: The code is made available at: http://wwwkramer.in.
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1 INTRODUCTION

With the ever increasing number of known protein structures, the
assignment of individual domains to structural classes has become
a crucial task in computational biology. For this purpose, several
protein databases like SCOP (Murzin et al., 1995) and CATH
(Orengo et al., 1997) have been created over the past few years,
trying to categorize protein structures into various (hierarchical)
classes that reflect certain common evolutionary or structural
properties. Ranging from manual inspection of protein topologies
and sequences to fully automatic assignment methods, they are built
upon diverse approaches and employ various criteria and orders of
generality to assign the class of a target protein.

One of the most important and best regarded databases is
SCOP, Structural Classification of Proteins, an originally completely

*To whom correspondence should be addressed.

manually built hierarchical class structure. Although a certain degree
of automation has been introduced since its first release in order
to cope with the heavily increasing number of newly discovered
protein structures, it still features the highest degree of human expert
knowledge (Andreeva et al., 2007). This has ambivalent effects: on
the one hand, it has made SCOP become a point of reference for
comparing the quality of protein classification methods in a variety
of research areas, and it also comes with the disadvantage of leading
to a slow update process; since its publication, SCOP followed
about an annual release cycle so that novel protein structures are
not available for prediction efforts relying on protein structure
classifications.

With the introduction of structural alignment algorithms like
Vorolign (Birzele et al., 2007) and PPM (Csaba et al., 2008), it
was recently shown for comprehensive test sets that automatic
predictions solely relying on structure alignment scores can achieve
classification accuracies beyond 90% for the higher levels of SCOP
and around 85% on the family level. Another recent method,
AutoSCOP (Gewehr et al., 2007), directly aims at predicting the
future SCOP classification by employing a sequence-pattern based
filter and Vorolign as a plug-in and achieved 92% accuracy also on
the family level.

In the cases those protein similarity measures have been used
as classifiers so far, it has always been in an instance-based way,
i.e. the structure with the highest similarity was determined and its
respective class assigned to the target protein. Model-based machine
learning methods were assumed not to be suitable, as classes with
only one or a few members would have to be generalized. This is
why Melvin et al. (2008) recently introduced a simple classification
scheme called punting, which combines models and instance-based
learning by trying to use models for larger classes and a best-
hit approach otherwise. In the following, we not only show how
punting can be improved, but also introduce a variety of alternatives,
including one that discards instance-based learning altogether. Their
subsequent evaluation leads to classification accuracies representing
statistically highly significant improvements over any previous
approach used for the same datasets so far.

It should still be noted that although this article exclusively
uses Vorolign as an alignment algorithm and SCOP families
as the prediction target, the proposed methods can be applied
to basically any structural similarity measure and classification
problems with small class sizes (e.g. protein function prediction,
comparison of SCOP and CATH). Vorolign was only chosen for its
good performance and comparably low computational requirements,
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while SCOP represents a gold standard in terms of protein domain
classification.

In summary, the contributions of this article are as follows: first,
we present a new kernel-based machine learning approach based on
a highly predictive structural alignment method (Vorolign). While
the structural alignment method already gives excellent results in
classification, we show that it is possible to optimize performance
using statistical machine learning on top of it. For this purpose, we
test and evaluate various methods for indefinite kernels based on
structure alignment scores in SVM learning. Second, we explore
the design space of classification algorithms for large and small
classes of proteins between instance-based (k-NN and variants)
and model-based learning. Traditionally, instance-based learning
was used almost exclusively due to the existence of many small
classes in the SCOP hierarchy. Third, we present highly competitive
classification results for structure alignment-based prediction of
SCOP families. The best methods presented here improve with a
high statistical significance over the underlying structural alignment
method (Vorolign) and others (both in predicting SCOP 1.67 from
1.65 and SCOP 1.75 from 1.73; see Table 3).

2 METHODS

While structure alignment methods like Vorolign by Birzele et al. (2007)
are already highly accurate in distinguishing the various hierarchical SCOP
classes, their actual use (best hit or 1-Nearest Neigbor/INN) is still
comparably simple. Replacing INN by more advanced machine learning
techniques, however, is not easy, as the structural space of proteins is very
heterogeneous: many proteins share similar features while some others are
so particular that single-member classes need to be introduced. Although
we present a novel approach that allows to abstain from instance-based
learning (see Sections 2.2-2.4), it is commonly considered to be highly
improbable to find good models based on classes with less than about a
handful of members. Thus, we not only aimed for accurate models, but
also developed a number of approaches to integrate them with 1NN. Before
we describe the three methods (Global Separation, Threshold Learning and
Multi Model Separation; see Section 2.5) in detail, we present the foundation
of all methods in this article: the Vorolign structure alignment method and
kernels based on Vorolign alignment scores.

2.1 Vorolign

Vorolign is a fast method to flexibly align two or more protein structures. It is
based on the assumption that the environments of two structurally equivalent
residues are similar owing to positive selection in order to ensure the
structural integrity of the protein. The environment of a residue is supposed
to be captured by a c4-based Voronoi tessellation, which finally leads to a
protein sequence where each residue is represented as a Voronoi cell instead
of its former amino acid. Each cell implicitly contains information on protein
structure and, given a similarity function for a pair of cells, corresponding
sequences can efficiently be aligned using a primary dynamic programming.

The similarity measure is computed by Vorolign as the amino acid and
secondary structure conservation of the residues in the neighborhood of a
residue: two residues in the neighborhoods of two Voronoi cells are compared
to amino acid and secondary structure exchange matrices while the final
similarity of two cells is computed as the best alignment of the neighboring
residues determined by a second dynamic programming step (see Fig. 1).

In this article, we slightly changed the calculation of the final alignment
score compared to Birzele et al. (2007), leading to a second Vorolign variant
called Vorolign* (see Supplementary Material S1 for details). It was used in
any subsequent learning scheme.

The ability of Vorolign to classify protein structures has been shown to
be among the top performing protein structure alignment methods (Birzele
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Fig. 1. Vorolign starts with a first dynamic programming for all Voronoi cells.
In the figure, the score S of the two Voronoi cells corresponding to amino acid
residues x and y is to be computed (1). To this end, all neighboring residues
of the two cells are collected (2,3), ordered according to their position in
the original protein sequence and aligned in a second dynamic programming
step (4).

et al., 2007; Csaba et al., 2008). Its score for a pair of protein structures
appears to be a reliable predictor of similarity and taking the highest scoring
template in a set of proteins accurately identifies the correct SCOP family for
a given query structure. This last method will be referred to as Vorolign-INN
or Vorolign*-1NN, in case Vorolign* was used.

2.2 Eager learning with Vorolign

The concept of a kernel has undergone some change in recent years. It is
now referred to as basically any function giving the similarity of two input
instances. The reason lies in the fact that, with the right transformation, any
similarity measure can be made compatible with traditional kernel classifiers
like Support Vector Machines (SVMs). In computational biology, these
transformations were usually carried out by use of the Empirical Kernel
Map and the psd-Shift (see Supplementary Material S2). In parallel, the
mathematical interpretation of indefinite kernels has experienced a lot of
interest, resulting in many more methods to transform a similarity into a
kernel value. A good and up-to-date overview is given by Chen et al. (2009b).
Note, however, that while results certainly show that on average there
is progress toward better performance, classical methods like k-Nearest-
Neighbor or psd-Shift exhibit accuracies only insignificantly worse or even
better than the new approaches [Chen et al. (2009a, b)]. Furthermore,
while there is no clear winner among the new transformations, publication
dates also show that the battleground is far from being closed. Together
with the plain number of candidate solutions introduced by now and the
growing number of real-world datasets, their value still has to be shown on
a case-by-case basis.

In the end, we decided to use the Empirical Kernel Map, psd-Shift and
an own special variant of Shift, c-Shift (see Supplementary Material S2.3),
resulting in the kernels karap, kpsa—snifi and ke_spif, respectively. SMO (Platt,
1999a) was chosen as the SVM training procedure.

Even though there is no reason why other structure alignment algorithms
also could not benefit from a transformation into a kernel, a few points
still favored particularly Vorolign for model construction: highly competitive
results in the prediction of SCOP classifications in INN mode combined with
good RMSD values (Birzele et al., 2007); a comparably strong influence of
protein sequence on the structure alignment, thus rendering it especially
suited for the SCOP family level; fast running time in comparison with the
second best classifier in INN mode, CE (Birzele et al., 2007); a comparably
small number of negative Eigenvalues in the similarity matrices, indicating
a similarity measure quite comparable to an inner product of a Hilbert space,
the feature space of a traditional kernel (Haasdonk, 2005) (data not shown).

2.3 Stratified cross-validation and parameter selection

The only free parameters of our methods are the complexity parameter C
of SMO and, in case of k._suir, the value c, representing the number to
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Fig. 2. The figure shows a setting with three input points A, B and C,
where each point corresponds to an own class. The gray lines display the
hyperplanes of the underlying binary base classifiers. The black lines depict
the class boundaries induced by 1vsAll using those hyperplanes. Point D is
an example of a target that does not lie on the ‘1’-side of any binary classifier.
It is assigned to the class A, where it is the most unclear that it belongs to the
‘All’-side. Note that even two points P and P of different classes suffice to
define a maximum margin hyperplane. It would simply comprise all points
having equal distance to both P; and P, (data not shown).

be subtracted from the kernel diagonals. For their optimization via standard
parameter selection or grid search, the standard Weka (Holmes et al., 1994)
implementation of a stratified k-fold cross-validation (CV) was used in a
number of places. While the principle of stratification should be clear if
k is smaller than the largest class, it may not be if this is not the case:
when k-fold stratifying a class ¢, there will be m=|c|modk test folds with
[lc|/k] random members of class ¢ and k —m folds with [|c|/k] members.
If |c| <k, there will be k—|c| test folds without a representative member of
that class and |c| folds with exactly one random member. Note that having
all dataset classes represented in a test fold is not a prerequisite (e.g. consider
Leave-One-Out CV).

2.4 Multiclass model

2.4.1 1IvsAll To deal with multiple classes, the binary SVM has to be
employed in a way so that it can be used to differentiate between all the
SCOP families. We experimented with various methods for multi-class and
hierarchical classification, but found a classical 1vsAll approach to achieve
the best results here. This is probably due to the relative independence of class
sizes: if no Platt Scaling (Platt, 1999b) is used, simply the class achieving
the largest scaled distance to the hyperplane (w-x+b) is predicted.

2.4.2 1vsAll for all classes The extensibility of Platt Scaling in particular
allows to employ 1vsAll for single-member classes. SVM theory still holds
even in this case (see Fig. 2). Thus, 1vsAll was not only the standard multi-
class model for larger classes, but also represented a standalone classifier for
the entire dataset. The particular combination of 1vsAll and Vorolign* will be
referred to as Vorolign*-1vsAll. See Section 3.4 for details of the evaluation,
Supplementary Material S3 on how to optimize SVM parameters in such
a setting and Supplementary Material S5 for differences to instance-based
classification.

2.5 Integration of 1NN and models

Models are traditionally laid out to deal with classes with more than just a
handful of members. In effect, it is reasonable to integrate them with 1NN
when confronted with problems involving arbitrary class sizes. This can be
achieved with a surprisingly large variety of approaches, some of which will
be described in the following sections. As an overview, Figure 3 gives a
flowchart of the decisions that have to be taken before the label of a target is
predicted. Generally, the model has to gain a substantial lead over 1NN on a
dataset where small classes are excluded, so that the inevitable performance
loss caused by the integration with INN for the whole dataset is not as
dramatic that it would have been better to exclusively use INN from the
beginning. This accuracy decrease corresponds to wrong decisions in the
two diamonds in Figure 3.

Target

- %3

" Use Instance
Based
~._Classification? -

Classify the Target

Classify the Target
Using the Model using 1NN

i No

— Does the Target ™
Fit to any of the
...__!'_“flodeied Classes?

-~ 7'\_
—Yes— Final Class |}
M .

Fig. 3. The general workflow when combining instance- and model-based
learning. The decision whether a protein is classified by instance-based
learning can be taken before and after the classification with the model.
Due to better practical results, we used these decisions mutually exclusive,
i.e. only one of them was actually implemented as a learner, the other was
fixed to constantly return either ‘yes’ or ‘no’. Decisions before classification
can be taken by Global Separation, decisions after by Threshold Learning
or Multi Model Separation.

2.5.1 Global Separation This method attempts to separate instances in
large classes from instances in small classes globally. For this purpose, all
instances from large classes are combined in a new class A, while all instances
from small classes are combined in class B. Subsequently, any binary learner
can be used to predict whether a target supposedly belongs to a small or a
large class. The workflow in Figure 3 is implemented by letting Global
Separation decide what to do in the first diamond and always returning yes
in the second. For the evaluation in Section 3.3, this task was carried out by
INN and SMO with kazap and kysa—shifi-

2.5.2 Threshold Learning This method derives a threshold #¢ for each
large class that defines the probability a target must at least have to
be considered a reliable prediction. If found unreliable, the target is
classified with INN. To go back to Figure 3, we always chose model-based
classification in the first diamond and use the ¢¢-based decision in the second.
For implementation details, see Supplementary Material S4.1.

It has to be mentioned that the idea behind Threshold Learning is the
same as in Melvin et al. (2008), where it is called punting. There are a few
differences as well. We use cross-validation to obtain probabilities for the
samples of large classes instead of splitting the training set into two sets, we
use all samples even those from small classes as the negatives in the binary
classifiers and discard the user given parameter p to basically learn it via
LOO-CV. As Vorolign does not provide E-values, we also do not use double
punting, but always predict a class.

2.5.3 Multi Model Separation This method uses two models to decide
whether an instance is sent to INN: first, a multi-class model of the large
classes is applied. Second, a binary classifier particularly trained for the
‘winning’ class from step one decides whether it really belongs to that class.

The decisions in the diamonds of Figure 3 are taken analogously to
Threshold Learning. Implementation details are given in Supplementary
Material S4.2.

3 RESULTS AND DISCUSSION
3.1 Two datasets

As our goal is to compare the performance of best-hit, also referred to
as 1-Nearest-Neighbor (1NN), with other methods, we mainly used
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Fig. 4. A histogram of the distribution of family sizes (left: SCOP 1.65,
right: 1.73). Small families play a predominant role in both datasets while
some exceptionally big families are always retained. In general, this should
present a setting highly beneficial for instance-based learning approaches.
When considering the whole version of SCOP 1.65, the overall shape of the
distribution is conserved, but the y-axis has a much smaller range, e.g. for
SCOP 1.65 there are only 360 families of size one (data not shown here).

Table 1. Accuracies for minimal family size 10 (upper part) and 5 (lower
part)

kMap (%) kp.vd—Sht_'ﬂ (%)
INN - 95.8
1vsAll 94.0 96.4
1vsAll: P. Scal. 95.8 95.2
1vsAll: C-opt. 97.6 97.6
1vsAll: C-opt. & P. Scal. 96.4 95.8
INN - 86.8
1vsAll: C-opt. & P. Scal. 92.5 94.3
1vsAll: C-opt. 94.0 97.7

C-opt refers to the C parameter optimization for SVMs and P. Scal. to Platt Scaling.

the non-redundant dataset from the original Vorolign publication for
our evaluations. It contained 4357 training proteins from SCOP 1.65
and 977 test proteins from SCOP 1.67. To make sure our results are
still applicable to current data, we decided to also test on the latest
releases of SCOP (1.73 and 1.75), applying the same method to
reduce redundancy as for the first set. This resulted in 6981 training
and 852 test proteins. The distributions of family sizes are shown in
Figure 4.

3.2 Minimal family size 10 and 5

As a first attempt to outperform 1NN, all families with less than
10 members were excluded from the original dataset, leaving 586
training and 167 test proteins distributed among 41 families. Two
kernel matrices induced by kprqp and kpgq—snif (see Section 2.2)
were evaluated together with the influence of an optimization of the
SVM complexity parameter C via standard CV parameter selection.
Furthermore, 1vsAll was trained with and without Platt Scaling to
get a general impression of its influence in a setting with extremely
small families (see Section 2.4.1). Results are given in the upper
part of Table 1.

Generally, only very little can be said about significant differences
among the kernels, since most values lie closely together. Platt
Scaling is apparently not essential already at this minimal family

Table 2. Results for the separation of small and large families. PPV, NPV,
sensitivity (Sens.), specificity (Spec.) and accuracy on the whole SCOP 1.67
test set are shown

PPV NPV Sens. Spec. Accuracy (%)

TL-1vsAll 0.98 0.79 0.57 0.99 87.7
MMS-Map 0.99 0.89 0.80 0.99 88.3
MMS-c-Shift 0.99 0.89 0.80 0.99 88.2
GS-1INN 0.96 0.90 0.84 0.98 87.7
GS-Map 0.90 0.85 0.76 0.94 85.2
GS-c-Shift 0.57 0.62 0.09 0.96 n/a

Methods under evaluation are Threshold Learning (TL) using probabilities obtained via
LvsAll, Multi Model Separation using kjzq, (MMS-Map) and k. gpif; (MMS-c-Shift)
as kernels and Global Separation using INN (GS-INN), kpqp (GS-Map) and ke gpifr
(GS-c-Shift). In case of a perfect separation of small and large families, the model
would be 4.4% better than 1NN, raising the overall accuracy on the whole SCOP 1.67
test set from 87.5% to 91.9%.

size and even seems to be slightly harmful. The absence of C
optimization (i.e. C=1) produced the overall worst accuracy with
94.0%, so that this variant was no longer evaluated.

To increase the model’s coverage, find a boundary for its minimal
family size and further investigate the kernels’ performance, we
created a dataset where only families with at least five members are
allowed, instead of the former 10. This led to 1278 training and 385
test instances belonging to 153 distinct families. Evaluation results
are given in the lower part of Table 1.

In this setting, the 1NN approach was found to have dropped by
9.0% to 86.8%. Models suffered only a minor degradation compared
to minimal family size 10, giving them a considerable lead of at
least 5.7% over instance-based learning. Among the 1vsAll models,
Platt Scaling continued to have detrimental effects, even preventing
the best accuracy of all (97.7%) which was achieved in combination
with kpsq—spift- The latter was constantly on par or better than kpgp.

3.3 Combination of model- and instance-based
classification

The threshold of at least five members per family still appeared to be
well suited for model-based classifiers and covered more than a third
of the instances of the whole dataset. Thus, we did not lower family
sizes any more, but tried to combine 1vsAll with INN in order to
make predictions for the whole SCOP 1.67 test set (see Section 2.5).

To compare performance, we used sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV) and
accuracy on the whole test set. Sensitivity gives the fraction of
proteins belonging to a large family that were also predicted as
such, and specificity the same for small families. PPV is the ratio of
correctly predicted positive samples compared to all positives and
NPV the analog for the negatives. Here, sensitivity and PPV are the
two most important measures as they reflect coverage and accuracy
of the separator, respectively. See Table 2 for results.

INN showed the best performance of all Global Separators
(see 2.5.1); has, however, the disadvantage that it practically
functions as a false-positive (FP) filter specifically for instance-
based classification. The FPs in the separation of small and large
families all correspond to actual family misclassifications later made
by the 1NN for all families. Thus, the set of true positives (TPs) will
experience a much smaller error rate in 1NN than to be expected
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on average. At the same time, all FPs are inevitably inherited by
the model, which will have no effect on the performance on TPs. In
the end, the approach achieved an accuracy of 87.7%. The SVM
as a Global Separator (see 2.5.1); could not even closely reach
this performance. The high number of TPs goes along with a large
fraction of FPs in the context of kpzqp so that performance drops
to 85.2%. kc_gspif s best explained with coming very close to a
coin-flip classifier, its feature space seems in no way suitable for
this bisectional hyperplane.

With Threshold Learning (see 2.5.1); PPV and NPV greatly differ,
which is mostly due to the intended minimization of the FP rate
during training [False-negatives (FNs) are by far not as harmful
as FPs, since their classification can be corrected by 1NN; a FP is
automatically a misclassification]. 1vsAll produced a large fraction
of FNs, thus considerably reducing the amount of targets for the
model and this way the chance to gain lead over 1NN. Sensitivity
can be increased by introducing different criteria than minimal FP
rate, but it never led to a greater lead over 1NN, since the higher
FP rate always went along with a lower PPV (data not shown). In
the end, Threshold Learning (see 2.5.1); had an error rate of 1.3%
among the test instances for large families compared to 0.8% for
INN, giving it a lead of 0.2% on the whole dataset.

The kpgqp-based Multi Model Separation (see 2.5.1); takes the
position as the most accurate separator. The slight advantage of
ke_snife over kpyqp seems to have switched in favor of kpzqp, as
it is 0.1% better on both the test set and in terms of the lead over
INN, which amounts to 88.2% for k. _ ;-

At this point, we want to emphasize again that the given results
already represent the accuracies of fully equipped classifiers, not
leaving out any families of SCOP. For a comparison of their
performance in context of the other methods for the whole dataset,
see Table 3.

3.4 Models for arbitrarily small families

Rather out of curiosity than expected increase of performance,
we investigated how accuracies of 1NN and models develop
when shifting the minimal family size between 1 and 10 (see
Section 2.4.2). One particularly interesting question is further if
the ideal minimal family size for models, i.e. the point where the
gap of accuracy between instance- and model-based learning is
the largest, can be derived from the training data alone. In our
own prior evaluation and basically any former publication about
model-based protein classification involving SCOP [e.g. Melvin
et al. (2008)], the minimal class size was chosen more or less
arbitrarily.

Thus, we created the following datasets. For every i in a range
from 1 to 11, Dil'és represented all proteins from our SCOP 1.65
variant except those belonging to a family with less than i members.
For each of those datasets, a set Dl.l'67 was established which only
contained those proteins from our SCOP 1.67 variant whose family
was among the ones in Dil'65. Each Dil'65, with i in a range from
1 to 10, was employed as a whole as a training set for both 1NN
and 1vsAll. In this setup, Dl-1'67 represented the according test set.
Furthermore, every Dil'65, with 7 in a range from 2 to 11, was also
evaluated in a 10-fold stratified CV, again for both INN and 1vsAll.
Note that in this context, a minimal family size of i actually means
dealing with a dataset with a minimal family size of i — 1 at training
time.

Accurscy
090 085 1.00
anm® ; )
% \
1

085

0.80

T T
> 4 & ] 10
Minimal Famiy Size

Fig. 5. Family sizes ranging from 1 to 10. Line B (gray dotted) indicates
the performance of 1NN on the SCOP 1.67 test set, line C (gray solid) its
performance in a 10-fold stratified CV. The model was always set to 1vsAll
with k._spir and fixed parameters. Line A (black solid) gives the accuracy
on the SCOP 1.67 test set, and line D (black dotted) the same in a 10-fold
stratified CV.

For all of the resulting 20 1vsAll evaluations, we left the ¢
parameter of kc_gp;f at O and took a strictly hard margin. Only
for the two times where 1vsAll was used in conjunction with
minimal family size 1, we additionally applied a grid search
optimization for ¢ and C. For the SCOP 1.65-1.67 setup, the
optimization dataset was consequently D%'(’S; for the CV, we
altered grid search so that all single-member families would be
excluded for parameter optimization and then re-added afterwards.
See Section 2.3 and Supplementary Material S5 for a description
of the optimization routine and Supplementary Material S6 for an
analysis and discussion of the resulting models.

All this summed up to 42 individual evaluations. Figure 5 gives
an overview of the 40 experiments without parameter optimization.
The results of the remaining two are given in the following. For a
comparison of the two SCOP 1.65-1.67 evaluations using all data
(i.e. minimal family size 1) with other methods, we refer to Table 3.

The most striking part of the plot is arguably the strong
alternations in the accuracy of 1NN on the SCOP 1.67 test set. It can
only be explained by fluctuating family distributions and, because
the corresponding CV has a very continuous accuracy, is a strong
indicator that the cross-validated results do not necessarily reflect
the classifiers’ performance on real-world data. It is additionally
confirmed by the fact that the evaluation of the model on the test set
almost always shows better accuracies for the SCOP 1.67 test set
than for the corresponding CV.

This also gives a very clear answer to our question whether the
optimal minimal family size can be learned from the training data:
it cannot. While there is a clear correlation between the CV results
for 1vsAll and INN, it is impossible to predict the performance
of 1NN on real world data, given a specific family size threshold.
Thus, any lead in accuracy of a model over 1NN for a given family
size is highly linked to the chosen minimal family size and so is
the performance of any scheme integrating 1NN and models. This
can also be seen from the evaluation on a newer SCOP version in
Section 3.5.

In context of the CV, the sharp performance loss at family size 1
gives the model an overall accuracy worse than that of instance-
based learning. But already the ¢ and C parameter selection prior to
each fold renders both methods to be exactly on par at 87.5%.

When comparing model- and instance-based learning on the
whole SCOP 1.67 test set, the model seems to be the overall
better choice. This even holds true for the smallest family size,
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making 1vsAll to be better on real-world data than 1NN without any
separation of small and large families. The exact value at family size
1is 89.3% for 1vsAll and 87.5 % for INN. When adding grid search
parameter selection, the optimal value for ¢ is found at 0.4 and a
soft margin discouraged, which is identical to what was obtained for
datasets with higher minimal family size. If plugged into 1vsAll, the
accuracy is drastically increased to 91.2% on the whole SCOP 1.67
test set.

3.5 Evaluation on SCOP 1.73 and SCOP 1.75

With new insights into the behavior of 1NN when alternating
minimal family sizes, it can be expected that the former lead of
models over 1NN in the minimal family size 5 case will significantly
change for SCOP 1.73 and 1.75. In fact, the biggest differences
in accuracy can now be found at minimal family size 2 and 3,
minimal family size 5 only produces an advantage of nine instances
of 1vsAll over INN. As the overall accuracy would only rise by
1% assuming perfect separation of small and large families, we did
not follow this approach here, but directly employed the model for
arbitrarily small family sizes. 1vsAll with fixed parameters (c=0,
hard margin) finally produced an accuracy of 89.4% compared to
85.7% for INN. When adding grid search, the training phase looks
very promising with optima for ¢ and C clearly pointing to 0.5
and 10, respectively. If applied to the test set, however, accuracy is
insignificantly reduced by 0.2% (two proteins). A closer examination
of the cause revealed that there simply was no other value for ¢ that
could have substantially improved accuracy. A final overview of the
performances of each method on the full test sets of SCOP 1.67 and
SCOP 1.75 is given in Table 3.

3.6 Performance overview

To put all the results of this article on the complete SCOP
datasets into relation and get an impression of how methods from
other publications have performed, we compiled their results in
Table 3. It features the 1vsAll models for all families, schemes
integrating INN and models and also a collection of the best
performing 1NN algorithms besides Vorolign. Each 1NN method
was evaluated within the same prediction framework, so that
performance differences could only be attributed to the methods
themselves. They were all used with standard parameters.

3.7 Running times of model training and testing

Concerning the Vorolign-based experiments, the by far most time
consuming task was the structural alignment of all training proteins
against each other in order to create the kernel matrices. This took
about 1200 CPU hours on an Opteron 2218 (2.6 GHz/1 MB) or 24
wall clock hours with 50 CPUs running in parallel. Training of the
models and classification of all test proteins was done in less than
6 CPU hours for each dataset. The number of 1200 CPU hours for
the alignments might seem large, but considering the annual release
cycle of SCOP and the fact that, in the transition from one SCOP
release to the next, solely alignment scores among new and between
new and old domains have to be calculated, the approach does not
lack practicability.

Table 3. Accuracies of the best methods evaluated so far on the two datasets
described in this article

SCOP 1.67 SCOP 1.75

TM-align- 1NN 83.8% -
CE-INN 84.6% -
PPM-INN 88.3% -
Vorolign-1NN 86.4% -
Vorolign*-1NN 87.5% 85.7%
TL-1vsAll 87.7% (2.88e-2) -
MMS-Map 88.3% (1.53e-3) -
MMS-c-Shift 88.2% (1.61e-3) -
GS-INN 87.7% (6.80e-2)

89.4% (7.90e-7)
89.2% (1.14e-6)

Vorolign*-1vsAll w/o Opt.
Vorolign*-1vsAll w/ Opt.

89.3% (1.47e-2)
91.2% (1.44e-5)

The results of the first four INN methods (TM-align, CE, PPM, Vorolign) are cited
from Birzele er al. (2007) and Csaba et al. (2008) and based on various other
structural alignment methods besides Vorolign. Vorolign*-1NN is the variant of Vorolign
introduced in the last paragraph of Section 2.1 and Supplementary Material S1. Results
for TL-1vsAll, MMS-Map, MMS-c-Shift and GS-1INN are taken from Section 3.3.
Vorolign*-1vsAll values reflect the accuracies obtained in Sections 3.4 and 3.5 when
applying it with and without parameter optimization. Where possible, we carried out a
McNemar test to evaluate the significance of the lead over Vorolign*-1NN. Its P-value
is given in brackets.

3.8 Comparison and integration with AutoSCOP

The property of self-containment, i.e. the non-use of external tools
and databases, allows our models to directly replace Vorolign-
INN in any scheme integrating it with other approaches, like
AutoPSI (Birzele et al., 2008). The latter is a publicly available
service for the prediction of SCOP classification on both sequence
and structure level and represents the combination of AutoSCOP
and Vorolign-1NN, together with a few extensions such as the
prediction of domain definitions. AutoSCOP can be seen as an
orthogonal approach to structure-based SCOP classification and
works on sequence level only. It was developed with a particular
emphasis on specificity, i.e. to only make predictions in the face
of strong evidence for a particular family. When employed as
a filter prior to structure-based classification, it reliably predicts
targets with high sequence identity to a template protein and
delegates the presumably harder cases to another, more sensitive,
classifier (e.g. based on Vorolign). To show that the combination
of AutoSCOP and Vorolign*-1vsAll directly improves over the
already synergistic combination of AutoSCOP and Vorolign*-1NN,
we turned to the current version of AutoPSI and investigated the
AutoSCOP predictions of all protein chains containing domains
from the SCOP 1.67 test set. If a domain featured contradictory
or no AutoSCOP predictions, we used a Vorolign-based approach
for classification, otherwise we predicted the one found by
AutoSCOP. The final accuracies for the 1.67 test set were 90.9% for
AutoSCOP&Vorolign*-1NN and 94.0% for AutoSCOP& Vorolign*-
1vsAll

3.9 Related work

Besides the 1vsAll approaches described in this article, we also
experimented with schemes from Zimek er al. (2010), but could
not find an improvement. Furthermore, we had to leave this and
related approaches for arbitrarily small families since it is a common
practice in the field of machine learning-driven fold recognition and
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remote homology detection to design algorithms solely for larger
structural classes. Another candidate group of methods, clusterings
trying to adopt the SCOP hierarchy, like e.g. StralCP (Zemla et al.,
2007), are not directly applicable as predictors and pose problems
such as false splitting (e.g. generation of two families instead of
one), false merging (generation of a cluster comprising e.g. two
families) or the creation of the correct clusters, but over different
hierarchical levels. Also even the rough comparison of error rates
is largely not possible because of issues like the restriction of the
evaluation to small, not representative fractions of SCOP (Huan
et al., 2004) or to levels below family (Madera and Gough, 2002),
the creation of training and test sets with only one SCOP release
(Melvin et al., 2008) and the prediction of CATH instead of SCOP
(Rogen and Fain, 2003). From our perspective, the most complete
alternative work is SCOPmap (Cheek et al., 2004). Even though
targeting only superfamilies, thus again not directly comparable,
their method should be readily applicable also for the family level.
In principle, it is a meta classifier combining six other external
tools, partially relies on external protein databases and performs
a weighted vote to make the final prediction in case simple BLAST
has not returned a suitable hit. In contrast, we see our approach as
a more light-weight alternative, especially regarding the number of
free parameters, which goes into the hundred for SCOPmap.

4 CONCLUSION

In the context of structure-based SCOP domain classification, we
have presented a new practical approach to dealing with indefinite
similarity measures, several new ways to integrate both model- and
instance-based learning and showed that even the exclusive use of
models is not only possible but also preferable to combinations
with a best-hit approach. Our results for the latter pose statistically
highly significant increases in accuracy compared to any other
method evaluated on the same data so far. Future work could further
investigate the whole new class of transformations of possibly
indefinite similarity measures into SVM compatible kernels. The
generality of the methods also allows to largely extend their scope
of application to e.g. protein function prediction.

Furthermore, while we cannot rule out the influence of bias arising
from the redundancy reduction of the datasets, our results indicate
that the performance of best-hit on real-world SCOP test data will
substantially and unpredictably change if structural classes up to a
certain size are excluded. Thus, even if models show better accuracy
than best-hit for a certain minimal class size, this might no longer be
the case if this size or the dataset is changed. As schemes integrating
best-hit and models highly depend on the superiority of models
over best-hit for a given minimum class size, we argue that their

performance in comparison to the exclusive use of best-hit can only
be evaluated by shifting this size and using multiple datasets.
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