Homology-based prediction of protein function

Tobias Hamp
Winter term 2013/2014
Overview

- Methods
 - (PSI-)BLAST
 - Motifs
 - Machine learning
 - Text-mining
 - ...
- Target functions
 - EC numbers
 - Localization
 - Transmembrane yes/no
Overview

- **Methods**
 - (PSI-)BLAST
 - Motifs
 - Machine learning
 - Text-mining
 - ...

- **Target functions**
 - EC numbers
 - Localization
 - Transmembrane yes/no
Lecture "Protein Prediction II", 2010/11

• Lecture held by Prof. Burkhard Rost
Lecture "Protein Prediction II", 2010/11

• Lecture held by Prof. Burkhard Rost

• Accompanying exercises: Esmeralda Vicedo, Christian Schaefer, Tobias Hamp
Lecture "Protein Prediction II", 2010/11

- Lecture held by Prof. Burkhard Rost
- Accompanying exercises: Esmeralda Vicedo, Christian Schaefer, Tobias Hamp
- Exercise task: Implement simple function predictor
- 16 students split into 3 groups, each group supposed to implement own predictor
Target Functions

• “… function is everything that happens to or through a protein.” Rost et al., *CMLS*, 2003
Target Functions

• “… function is everything that happens to or through a protein.” Rost et al., *CMLS*, 2003

• It's complex
Target Functions

- “… function is everything that happens to or through a protein.” Rost et al., *CMLS*, 2003
- It's complex
- Best we can do today: The Gene Ontology
 - Quasi-standard for function annotation
 - 3 Categories:
 - Molecular Function, Biological Process, Cellular Component
 - 1 protein => 3 types of annotations
 - Hierarchical structure
Human hemoglobin subunit alpha
Nearest Neighbor Principles

1. PSI-BLAST target against GO annotated part of SwissProt

2. Transfer GO terms of the best hit(s) to the target
 - 1-Nearest-Neighbor: only consider first hit (best e-Value)
 - k-Nearest-Neighbor: consider first k hits (alternatively: hits below a certain e-Value)
 - Weighted k-Nearest-Neighbor: GO terms of more significant hits are more important
Methods in Detail - Group A

- Members
 - Ariane Boehm
 - Tatjana Braun
 - Rebecca Kassner
 - Cedric Landerer
 - Yannick Mahlich

- Method (key features)
 - Weighted 6-Nearest-Neighbor
 - Considers hit count and e-Value of each term
 - Outputs 3 terms per ontology
 - Outputs 3 scores (0.0, 0.5, 1.0)
Methods in Detail - Group A

Top 6 BLAST Hits

protein 1 → GO7, GO4, GO9
...
protein 6 → GO7, GO11

GO Term Scoring; GO Tree Assembly

Redundancy Reduction of Branches; Output

Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Methods in Detail - Group B

• Members
 – Mark Heron
 – Thomas Hopf
 – Stefanie Kaufmann
 – Denis Krompass
 – Stefan Seemayer

• Method (key features)
 – Weighted k-Nearest-Neighbor
 – Sophisticated continuous scoring scheme based on hit count, e-Value, ontology structure
 – Score normalization
 – Parameter optimization
Methods in Detail: Group B

Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012

Top BLAST Hits
- protein 1 e-val 1e-20
 - GO7, GO4, GO9
- ...
- protein N e-val 1e-03
 - GO4, GO37, GO13

Raw Template Score
- evals = log(1e-20),...,log(1e-03)
- Raw Template Score = Ø(evals)+stddev(evals)

Template Quality Score

GO Tree Assembly: E-Value Assignment
- GO4
- log(1e-20), log(1e-03)

Term Support Calculations
- 0.74
- 1.0
- 0.66
- 0.43
- 0.22
- 0.30

Combined Leaf Score
- 0.72
- 0.63
- 0.65

Output: Template Quality Score * Combined Leaf Score
- 0.91*0.72 = 0.66
- 0.91*0.63 = 0.57
- 0.91*0.65 = 0.59
Methods in Detail - Group C

- Dominik Achten
- Florian Auer
- Maximilian Hecht
- Peter Hoenigschmid
- Michael Kiening
- Manfred Roos

Method (key features)

- Weighted e-Value based Nearest-Neighbor
- Custom scoring scheme based on Blast score and hit count
- Continuous term scores
Methods in Detail: Group C

Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Evaluation Measure

Precision vs. Recall graph with a point labeled P1.
Evaluation Measure

Precision vs. Recall
Evaluation Measure

Precision

Recall
Evaluation Measure

\[F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} \]
Evaluation

• Targets: 10,000 random SwissProt proteins

• Templates: the rest of SwissProt (~400,000 proteins)

• Evaluation based on:

 – All 10,000 targets (⇒ recall of an unpredicted target: 0.0)

 – Commonly predicted targets, i.e. targets for which all three methods have made a prediction
Evaluation Results

All Targets

Common Targets

Precision

Recall

Method A
Method B
Method C
Meta
Random

Method A
Method B
Method C
Meta
Random
Summary

• Hasty implementation, but ...
• Nearest-Neighbor approaches work surprisingly well (?)
• Technical details matter
• Maybe too many "random giveaways" in measures based on entire DAG
CAFA - CRITICAL ASSESSMENT OF FUNCTION ANNOTATIONS
Going Big

- Great goal: Use all data to predict all functions
- Last 10 years: many function predictors, but
 - Different data sets
 - Different input features
 - Different target classes
 - Different evaluation measures
 - Different strengths/weaknesses
Critical Assessment

- Year 2011: 1st Critical Assessment of Function Annotations (CAFA)
 - Community effort to measure the current state of the art in function prediction
 - Independent assessors, supported by renowned principal investigators
CAFA 2011 – Basic Steps

1. Find organizers

2. Agree on target functions

3. Agree on target proteins

4. Develop evaluation measures

5. Evaluate predictions
CAFA - Step 2: Target Functions

- Best we can do today: The Gene Ontology

Easy, right?
CAFA - Step 2: Target Functions

- Gene Ontology difficulties
 - Different types of relations
 - Different parent ⇔ child inference rules
 - Different evidence codes
 - Different qualifiers
 - Different GOs/GO versions
 - Different annotation resources
CAFA - Step 2: Target Functions

- Gene Ontology difficulties
 - Different types of relations
 - Different parent↔child inference rules
 - Different evidence codes
 - Different qualifiers
 - Different GOs/GO versions
 - Different annotation resources
CAFA - Step 2: Target Functions

- Gene Ontology difficulties
 - Different types of relations
 - Different parent ⇔ child inference rules
 - Different evidence codes
 - Different qualifiers
 - Different GOs/GO versions
 - Different annotation resources
CAFA - Step 2: Target Functions

• Gene Ontology difficulties
 – Different types of relations
 – Different parent ⇔ child inference rules
 – Different evidence codes
 – Different qualifiers
 – Different GOs/GO versions
 – Different annotation resources

The **Qualifier** column is used for flags that modify the interpretation of an annotation. Allowable values are **NOT**, **contributes_to**, and **colocalizes_with**.
CAFA - Step 2: Target Functions

• Gene Ontology difficulties
 – Different types of relations
 – Different parent↔child inference rules
 – Different evidence codes
 – Different qualifiers
 – Different GOs/GO versions
 – Different annotation resources
CAFA - Step 2: Target Functions

- Gene Ontology difficulties
 - Different types of relations
 - Different parent \leftrightarrow child inference rules
 - Different evidence codes
 - Different qualifiers
 - Different GOs/GO versions
 - Different annotation resources
CAFA - Step 2: Target Functions

• Gene Ontology: Simplifications in CAFA
 - Only one type of relation/Precomputed graphs
 - Experimental evidence codes only
 - Agreement on GO version
 - Swissprot

 IDA: Inferred from direct assay
 IPI: Inferred from phys. interaction
 IEP: Inferred from expr. pattern
 IC: Inferred by curator
 IMP: Inferred from mutant phenotype
 IGI: Inferred from genetic interaction
 TAS: Traceable author statement
 EXP: Inferred from experiment

• Molecular Function Ontology
 - 8728 terms; 7003 leaves; (max_depth=11; branching_factor=5.9)

• Biological Process Ontology
 - 18982 terms; 8125 leaves; (max_depth=14; branching_factor=6.4)
Human Hemoglobin subunit alpha

GO:0015701 bicarbonate transport

GO:0008150 biological_process
GO:0065007 biological regulation

GO:0005575 cellular_component
GO:0005623 cell

GO:0003674 molecular_function
GO:0016209 antioxidant activity
GO:0003824 catalytic activity
CAFA 2011 – Basic Steps

1. Find organizers ✓
2. Agree on target functions ✓
3. Agree on target proteins
4. Develop evaluation measures
5. Evaluate predictions
CAFA - Step 3: Target Proteins

- From each CAFA competitor, we want predictions of proteins which ...
 - do not have experimental annotations right now
 - will have experimental annotations in 4 months
 - suffice to establish statistical significance (in terms of number of predictions)
CAFA - Step 3: Target Proteins

• From each CAFA competitor, we want predictions of proteins which ...
 – do not have experimental annotations right now
 – will have experimental annotations in 4 months
 – suffice to establish statistical significance (in terms of number of predictions)

• How would you do that?
CAFA - Step 3: Target Proteins

1a. Reduce databases t_0 to a few organisms (10)
1b. Remove all proteins with exp. annotations from DB's t_0 => Target proteins t_0 (= CAFA targets; 50k)

2. Target annotations $t_0 =$
Swiss-Prot(t_2) – (Swiss-Prot(t_1) ∪ GOA(t_1) ∪ GO(t_1))
CAFA - Step 3: Target Proteins

Enzymes of known function

Proteins of known function

All proteins

unique
rand new

unique

All proteins

© Burkhard Rost
CAFA - Step 3: Target Proteins

Annotations per organism in Swissprot (Jan 2011)

CAFA targets

<table>
<thead>
<tr>
<th>Organism</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis thaliana</td>
<td>32</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>3</td>
</tr>
<tr>
<td>Xenopus laevis</td>
<td>7</td>
</tr>
<tr>
<td>Homo sapiens</td>
<td>123</td>
</tr>
<tr>
<td>Mus musculus</td>
<td>136</td>
</tr>
<tr>
<td>Rattus norvegicus</td>
<td>23</td>
</tr>
<tr>
<td>Dictyostelium discoideum</td>
<td>16</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>1</td>
</tr>
<tr>
<td>Escherichia coli K-12</td>
<td>253</td>
</tr>
</tbody>
</table>

© Predrag Radivojac, Ph.D.
CAFA - Step 3: Target Proteins

Evidence codes in Swissprot (Jan 2011)

CAFA targets

© Predrag Radivojac, Ph.D.
CAFA - Step 3: Target Proteins

Leaves per protein in Swissprot (Jan 2011)

- MFO:
 - 1 leaf
 - 2 leaves
 - 3 leaves

- BPO:
 - 2 leaves
 - 3 leaves
 - 4 leaves

CAFA targets:

- 1 leaf
- 2 leaves
- 3 leaves
- 4 leaves
- 5 leaves
- 6 leaves
- 7 leaves
- 8+ leaves

© Predrag Radivojac, Ph.D.
CAFA - Step 3: Target Proteins

MFO Leaves
- protein binding
- protein homodimerization activity
- zinc ion binding

BPO Leaves
- cell adhesion
- response to DNA damage stimulus
- nuclear mRNA splicing, via spliceosome
CAFA - Step 3: Target Proteins

Sequence identity to already annotated proteins

- **MFO**
- **BPO**

Sequence identity vs Count

© Predrag Radivojac, Ph.D.
CAFA 2011 – Basic Steps

1. Find organizers
2. Agree on target functions
3. Agree on target proteins
4. Develop evaluation measures
5. Evaluate predictions
CAFA - Step 4: Evaluation Measures

- We now have ...
 - the targets
 - their annotations
 - predictions by ~50 different methods

- Q: How can we compare their accuracies?
- A: Threshold measure and maximum F1 score (see previous slides)
Evaluation Measure

\[F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} \]
CAFA 2011 – Basic Steps

1. Find organizers ✔
2. Agree on target functions ✔
3. Agree on target proteins ✔
4. Develop evaluation measures ✔
5. Evaluate predictions
CAFA – Step 6: Evaluation

- Only model 1 is evaluated for every group
- Evaluations are measured separately for Molecular-Function and Biological-process Ontologies
- No measure is perfect
- Implementation of evaluation code a joint effort
- Identities of the groups hidden
- Baseline classifiers
 - Priors: score is simply based on prevalence of a specific annotation
 - BLAST: transfer annotations based on E-value threshold
<CONTENT REMOVED>
Threshold Measure
MFO

<CONTENT REMOVED>
Threshold Measure
BPO

<CONTENT REMOVED>
BPO difficult targets
Max F1 Scores

<CONTENT REMOVED>
CAFA – Step 6: Evaluation

<CONTENT REMOVED>
CAFA – Step 6: Evaluation

Sequence-based prediction works well, but a lot of room for improvement
METHOD OPTIMIZATIONS AFTER CAFA
Post CAFA Optimizations

• Our classifiers for CAFA
 – StudentA-C
 – PSI-BLAST
Post CAFA Optimizations

• Our classifiers for CAFA
 – **StudentA-C**
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
Post CAFA Optimizations

• Our classifiers for CAFA
 – StudentA-C
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
 – No/False optimizations
Post CAFA Optimizations

• Our classifiers for CAFA
 – StudentA-C
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
 – No/False optimizations
 – No time to submit meta predictions
Post CAFA Optimizations

• Our classifiers for CAFA
 – **StudentA-C**
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
 – No/False optimizations
 – No time to submit meta predictions
 – Bug(s)
Post CAFA Optimizations

• Our classifiers for CAFA
 – StudentA-C
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
 – No/False optimizations
 – No time to submit meta predictions
 – Bug(s)
 – No original measure implementations available
Post CAFA Optimizations

• Our classifiers for CAFA
 – StudentA-C
 – PSI-BLAST

• Issues
 – Only one of three classifiers evaluated
 – No/False optimizations
 – No time to submit meta predictions
 – Bug(s)
 – No original measure implementations available
 – Details (evidence codes, ...) unavailable
Post CAFA Optimizations

- Let's improve!

Optimization idea

2x

Proteins of known function

All proteins

brand new

unique
Post CAFA Optimizations

Time:
- t_0: Jan 1, 2010
- t_1: Jan 18, 2011
- t_2: May 31, 2011

<table>
<thead>
<tr>
<th>Templates</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td><2010</td>
<td>2010</td>
</tr>
<tr>
<td>Swiss-Prot(t_0)</td>
<td>Swiss-Prot(t_1) – Swiss-Prot(t_0)</td>
</tr>
<tr>
<td><2011</td>
<td>2011</td>
</tr>
<tr>
<td>Swiss-Prot(t_1)</td>
<td>Swiss-Prot(t_2) – Swiss-Prot(t_1)</td>
</tr>
</tbody>
</table>
Post CAFA Optimizations

- **Data sets**
 - Templates for parameter optimization:
 Anything before Jan 2010 (<2010)
 - Targets for parameter optimization:
 Annotations added between Jan 2010 and Dec 2010 (2010)
 - Templates for CAFA predictions:
 Anything before Jan 2011 (<2011)
 - Targets for CAFA predictions:
 Original CAFA targets (Jan 2011 – May 2011; 2011)
Post CAFA Optimizations

- Optimization of single classifiers
 - Free parameters: k's, e-Value's, other algorithmic alternatives (e.g. score cutoff switches, %seq. id. instead of %pos. id.)

\Rightarrow 36, 54, 72 parameter combinations for StudentA-C
Post CAFA Optimizations

• Optimization of single classifiers
 – Free parameters: k's, e-Value's, other algorithmic alternatives (e.g. score cutoff switches, %seq. id. instead of %pos. id.)

 => 36, 54, 72 parameter combinations for StudentA-C

• Data set
 – Templates: <2010
 – Targets: random subset of 2010
Post CAFA Optimizations

- Optimization of single classifiers
 - Free parameters: k's, e-Value's, other algorithmic alternatives (e.g. score cutoff switches, %seq. id. instead of %pos. id.)
 => 36, 54, 72 parameter combinations for StudentA-C

- Data set
 - Templates: <2010
 - Targets: random subset of 2010
 => Try all parameter combinations and pick best
 => StudentA'-C'
Post CAFA Optimizations

- Training of meta classifier **MetaStudent**
 - **Principle**: Use predictions of single classifiers as input to another classifier
 - Here: meta classifier = linear regression:
 \[xA' + yB' + zC' + i = p \]
 - \(A', B', C' \) are probability estimates for the same protein-GO term association by the three different student methods
 - \(x, y, z, i \) are the weights to be optimized
 - \(p \) is the new output probability for this protein-GO term association
Post CAFA Optimizations

• Training of meta classifier
 – Problem:
 We used the whole set 2010 for single method parameter optimization. Hence, it is no longer an ideal set for meta classifier training.
 ⇒ Random split of set 2010: 2010a and 2010b
 ⇒ First re-train methods StudentA-C with 2010a to predict set 2010b
 ⇒ Then change roles of 2010a and 2010b and repeat
 ⇒ This creates independent, yet optimized predictions for the entire set 2010
 ⇒ Use these predictions as input for the linear regression
Post CAFA Optimizations

• Training of meta classifier

Having trained StudentA-C and MetaStudent without using any data after Jan 2011, we can now predict the original CAFA targets
Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Post CAFA Optimizations – Result Ranks

<table>
<thead>
<tr>
<th></th>
<th>BPO</th>
<th></th>
<th></th>
<th>MFO</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top-20</td>
<td>Threshold</td>
<td>Leaf</td>
<td>Top-20</td>
<td>Threshold</td>
<td>Leaf</td>
</tr>
<tr>
<td>Priors</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>7</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Priors'</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>BLAST</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>GOtcha</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>StudentA</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>StudentA'</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>StudentB</td>
<td>11</td>
<td>11</td>
<td>7</td>
<td>11</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>StudentB'</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>StudentC</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>9</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>StudentC'</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>MetaStudent</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Homology-based inference sets the bar high for protein function prediction. Hamp et al. 2012
Post CAFA Optimiizations - Summary

• Loose coupling of simple nearest neighbors method works well
• No single measure is enough
• No single method excells in all categories
• Still a long road ahead, especially for leaf terms
• Problems of homology inference persist