Bioinformatics Resources
- Swissprot -

Lecture & Exercises
Prof. B. Rost, Dr. L. Richter
Institut für Informatik I12
Preliminary Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 26(^{th})</td>
<td>Intro, General Overview (1. sh.)</td>
<td>June 14(^{th})</td>
<td>NoSql 2 (7.sh.)</td>
</tr>
<tr>
<td>May 3(^{rd})</td>
<td>Sequence Databases (2. sh.)</td>
<td>June 21(^{th})</td>
<td>No lecture</td>
</tr>
<tr>
<td>May 10(^{th})</td>
<td>Sequence Databases (3. sh.)</td>
<td>June 28(^{th})</td>
<td>MongoDB, JavaScript (8.sh.)</td>
</tr>
<tr>
<td>May 17(^{th})</td>
<td>Structure Databases (4. sh.)*</td>
<td>July 5(^{th})</td>
<td>JavaScript / D3.js (9.sh.)*</td>
</tr>
<tr>
<td>May 24(^{th})</td>
<td>SQL (5. sh.)</td>
<td>July 12(^{th})</td>
<td>PredictProtein</td>
</tr>
<tr>
<td>May 31(^{st})</td>
<td>No lecture</td>
<td>July 19(^{th})</td>
<td>Wrap Up, Q&A</td>
</tr>
<tr>
<td>June 7(^{th})</td>
<td>SQL, NoSql (6. sh)</td>
<td>(July 26(^{th}) (LMU Statistics) or) July 31(^{st})</td>
<td>Exam</td>
</tr>
</tbody>
</table>
Names and Other Complications

Amos Bairoch

Ioannis Xenarios
taken from http://www.isb-sib.ch/people/ioannis.Xenarios

Alan J. Bridge
since 2018
taken from https://www.sib.swiss/fp/img/people/bridgea.jpg
History

1986 A. Bairoch created Swiss-Prot at the University of Geneva, since 1988 in collaboration with EMBL/EBI

1993 together with Ron Appel launch of ExPASy

1998 Foundation of SIB (Swiss Institute of Bioinformatics)

2002 Foundation of the UniProt consortium by EBI, SIB and PIR
UniProt Components:

- UniProtKB:
 - UniProtKB/Swiss-Prot
 - UniProtKB/TrEMBL
- UniParc: pure sequence archive, no annotations
- UniRef: consists of three databases of clustered sets of protein sequences (UniRef100, UniRef90, UniRef50) using the CD-HIT algorithm
- Proteomes: provides proteomes for species with completely sequenced genomes
ExPASy

- Expert Protein Analysis System (1993)
- now: SIB ExPASy Bioinformatics Resources Portal
Expasy Categories

- Proteomics
- Genomics
- Structure Analysis
- Systems biology
- Evolutionary biology
Expasy Categories

- Population genetics
- Transcriptomics
- Biophysics
- Imaging
- IT infrastructure
- medicinal chemistry
- glycomics
Resource Description

1. Resource name and description
2. Maintaining SIB group
3. Scientific category
4. Keywords: a controlled vocabulary is used to tag the resource
Resource Description

5. URL for the web interface and for the download if available

6. Software type: website, command line interface, GUI, etc

7. Status: green checkbox if currently available
UniProt/SwissProt Statistics

- Release 2019_03 from Apr 10th, 2019
 559,634 sequence entries, comprising
 201,129,965 amino acid abstracted from 265,241
 references

- Release 2018_04, Apr. 18th, 2018
 557,275 sequence entries, comprising
 199,856,860 amino acids abstracted from
 259,145 references

- taken from
UniProt/SwissProt Statistics

- in 2017_05: 554,515 sequence entries / 198509421 amino acids
What happens in an Update?

- Between 2019_2 and 2019_3:
 - 411 sequences have been added
 - 63 existing entries have been updated
 - Annotation of 145277 entries have been revised
- Growth over three years: 2019_3 vs 2018_4 vs 2017_5 vs 2016_5

<table>
<thead>
<tr>
<th>Protein existence (PE)</th>
<th>Entries</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Evidence at protein level</td>
<td>100,377</td>
<td>17.9</td>
</tr>
<tr>
<td></td>
<td>(98,566)</td>
<td>(17.7)</td>
</tr>
<tr>
<td></td>
<td>(95,143)</td>
<td>(17.2)</td>
</tr>
<tr>
<td></td>
<td>(92,536)</td>
<td>(16.8)</td>
</tr>
<tr>
<td>2. Evidence at transcript level</td>
<td>57,168</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>(57,060)</td>
<td>(10.2)</td>
</tr>
<tr>
<td></td>
<td>(57,649)</td>
<td>(10.4)</td>
</tr>
<tr>
<td></td>
<td>(57,757)</td>
<td>(10.5)</td>
</tr>
<tr>
<td>3. Inferred from homology</td>
<td>386,786</td>
<td>69.1</td>
</tr>
<tr>
<td></td>
<td>(386,164)</td>
<td>(69.3)</td>
</tr>
<tr>
<td></td>
<td>(386,111)</td>
<td>(69.6)</td>
</tr>
<tr>
<td></td>
<td>(387,589)</td>
<td>(70.3)</td>
</tr>
<tr>
<td>4. Predicted</td>
<td>13,478</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>(13,621)</td>
<td>(2.4)</td>
</tr>
<tr>
<td></td>
<td>(13,751)</td>
<td>(2.5)</td>
</tr>
<tr>
<td></td>
<td>(11,358)</td>
<td>(2.1)</td>
</tr>
<tr>
<td>5. Uncertain</td>
<td>1,825</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>(1864)</td>
<td>(0.3)</td>
</tr>
<tr>
<td></td>
<td>(1,861)</td>
<td>(0.3)</td>
</tr>
<tr>
<td></td>
<td>(1,953)</td>
<td>(0.4)</td>
</tr>
</tbody>
</table>
Development

Number of entries in UniProtKB/Swiss-Prot

More Numbers (rel. 2017_5)

- Top 20 species: 119,149 sequences, i.e. 21.5% of the total number of entries (as of 2019_3: 21.6%)

<table>
<thead>
<tr>
<th>Entries</th>
<th>No of Species</th>
<th>Entries</th>
<th>No of Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,570 (5,495)</td>
<td>8</td>
<td>240 (228)</td>
</tr>
<tr>
<td>2</td>
<td>1,921 (1,899)</td>
<td>9</td>
<td>229 (214)</td>
</tr>
<tr>
<td>3</td>
<td>1,054 (1,023)</td>
<td>10</td>
<td>133 (122)</td>
</tr>
<tr>
<td>4</td>
<td>668 (657)</td>
<td>11-20</td>
<td>719 (711)</td>
</tr>
<tr>
<td>5</td>
<td>493 (487)</td>
<td>21-50</td>
<td>442 (426)</td>
</tr>
<tr>
<td>6</td>
<td>405 (399)</td>
<td>51-100</td>
<td>217 (213)</td>
</tr>
<tr>
<td>7</td>
<td>285 (289)</td>
<td>>100</td>
<td>1049 (1.046)</td>
</tr>
</tbody>
</table>
Species Representation (rel. 2017_5/ 2015_5)

<table>
<thead>
<tr>
<th>Top</th>
<th># Entries 19_3</th>
<th># Entries 17_5</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20.415</td>
<td>20,201 (+3)</td>
<td>Homo sapiens (Human)</td>
</tr>
<tr>
<td>2</td>
<td>17.013</td>
<td>16,877 (+166)</td>
<td>Mus musculus (Mouse)</td>
</tr>
<tr>
<td>3</td>
<td>15.834</td>
<td>15,333 (+1,445)</td>
<td>Arabidopsis thaliana (Mouse-ear cress)</td>
</tr>
<tr>
<td>4</td>
<td>8.061</td>
<td>7,989 (+68)</td>
<td>Rattus norvegicus (Rat)</td>
</tr>
<tr>
<td>5</td>
<td>6.721</td>
<td>6,721 (+3)</td>
<td>Saccharomyces cerevisiae (Baker’s yest)</td>
</tr>
<tr>
<td>6</td>
<td>6.006</td>
<td>5,999 (+6)</td>
<td>Bos taurus (Bovine)</td>
</tr>
<tr>
<td>7</td>
<td>5.140</td>
<td>5,141 (+38)</td>
<td>Schizosaccharomyces pombe (Fission yeast)</td>
</tr>
<tr>
<td>8</td>
<td>4.481</td>
<td>4,435 (+2)</td>
<td>Escherichia coli K12</td>
</tr>
<tr>
<td>9</td>
<td>4.188</td>
<td>4,185 (+0)</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>10</td>
<td>4.146</td>
<td>4,134 (+3)</td>
<td>Dictyostelium discoideum (Slime mold)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
Representation of the Divisions (rel. 2017_5)

- Bacteria (60%), 333,047
- Eukaryota (33%), 185,305
- Viruses (3%), 16,719
- Archaea (4%), 19,444
Distribution of Eukaryota (rel. 2017_5)

- Human (11%), 20,202
- Other Mammalia (25%), 46,449
- Other (8%), 15,339
- Viridiplantae (21%), 38,739
- Other Vertebrata (10%), 18,066
- Fungi (18%), 32,674
- Insecta (5%), 9,059
- Nematoda (3%), 4,777
Length Distribution (rel. 2017_5)
Amino Acid Composition (rel. 2017_5)

gray=aliphatic, red=acidic, green=small hydroxy, blue=basic, black=aromatic, white=amide, yellow=sulfur
People Behind the Scenes

Swiss-Prot group

The Swiss-Prot group is directed by Dr Alan Bridge. One of the major strengths of the group is its annotation capacity served by expert staff scientists and supported by a dedicated team of software developers and bioinformaticians.

Director
- Alan Bridge (Group leader)

Software development
- Nicole Redaschi
- Parit Bansal
- Delphine Baratin
- Teresa Manuela Batista Noto
- Jerven Tjalling Bolleman
- Gérard Bouchet
- Edouard de Castro
- Béatrice Cuche
- Elisabeth Gasteiger
- Sebastien Gehant
- Arnaud Kerhomou
- Thierry Lombardot
- Monica Pozzato
- Daniel Walther

Annotation - Chordata
- Lionel Breuza
- Ghislaine Argoud-Puy
- Cristina Casals Casas
- Anne Estreicher
- Livia Famiglietti
- Arnaud Gos
- Nadine Gruaz
- Novila Hyka-Nouspikel
- Shyamala Sundaram

Annotation - Microbes
- Ivo Pedruzi
- Andrea Aucuincloss
- Marc Feuermann
- Chantal Hulo
- Philippe Lemeurier
- Patrick Masson
- Catherine Rivoire

Annotation - Plants
- Damien Lieberherr
- Emmanuel Bouist

Annotation - Transversal
- Elisabeth Coudert
- Lucila Almo
- Kristian Axelsen
- Florence Jungo
- Anne Morget
- Sandrine Pibout
- Christian Sigrist

Annotation - Quality Assurance (QA)
- Sylvain Poux
- Ursula Hinz

Communication / Outreach
- Marie-Claude Blatter
- Vivienne Gerritsen

UniProt Grant Administration
- Manuela Pruess

System administration
- Salvo Paesano
- Mikael Doche
- Karin Sonesson

Administration
- Doinide Domevil
- Laure Verbregue
SwissProt Annotation Process

- defined in http://www.uniprot.org/docs/sop_manual_curation.pdf
- explained in http://www.uniprot.org/help/manual_curation
Annotation Phases

1. Sequence curation
2. Sequence analysis
3. Literature curation
4. Family-based curation
5. Evidence attribution
6. Quality assurance, integration and update
Sequence Curation

- more than 95% are translated CDS from INSDC
- other sources: PDB, direct protein sequencing, projects not submitting to INSDC
- sequences are selected according to curation priorities (http://www.uniprot.org/program/)
- results in the “canonical sequence” for a gene/species pair
Steps toward the canonical sequence

- Entry selection
- Run BLAST similarity searches to identify additional sequences for the same gene
- Identify homologs by reciprocal BLAST and phylogeny based resources
- Lock selected entries for other curators to prevent duplication
Steps toward the canonical sequence

- Prepare sequence alignments with T-Coffee, Muscle, Clustal W

- Merge into the canonical sequence:
 - most prevalent
 - most similar to orthologs sequences found in other species
 - based on length and aa composition it allows the clearest description
 - default: longest

- record conflicts and variations
Sequence Analysis

- Several analysis programs are applied to the sequences for:
 - topological features
 - post-translational modifications
 - domains
- All results are manually checked and in- or excluded for annotation
Topological Analysis

<table>
<thead>
<tr>
<th>Tools</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal P</td>
<td>Presence and location of signal peptides</td>
</tr>
<tr>
<td>TargetP</td>
<td>Presence and location of transit peptides</td>
</tr>
<tr>
<td>Predotar</td>
<td>Mitochondrial, plastid or ER targeting sequences</td>
</tr>
<tr>
<td>ESKW</td>
<td>Transmembrane domains</td>
</tr>
<tr>
<td>MEMSAT</td>
<td>Transmembrane domains</td>
</tr>
<tr>
<td>TMHMM</td>
<td>Transmembrane domains</td>
</tr>
<tr>
<td>Phobius</td>
<td>Discriminates transmembrane and signal regions</td>
</tr>
</tbody>
</table>
Post-translational modification Analysis

<table>
<thead>
<tr>
<th>Tools</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPI-predictor</td>
<td>GPI lipid anchor sites</td>
</tr>
<tr>
<td>NetNGlyc</td>
<td>N-glycosylation sites</td>
</tr>
<tr>
<td>NetOGLyc</td>
<td>O-glycosylation sites</td>
</tr>
<tr>
<td>NMT Predictor</td>
<td>N-terminal myristoylation sites</td>
</tr>
<tr>
<td>Sulfinator</td>
<td>Tyrosine sulfatation sites</td>
</tr>
</tbody>
</table>
Domain Analysis

<table>
<thead>
<tr>
<th>Tools</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ps_scan</td>
<td>internal PROSITE profile, pattern and rule scanning</td>
</tr>
<tr>
<td>InterPro</td>
<td>retrieves non-PROSITE motif matches using InterPro database or InterProScan</td>
</tr>
<tr>
<td>Coils</td>
<td>Coiled-coils regions</td>
</tr>
<tr>
<td>polyAA</td>
<td>internal program which identifies homopolymeric stretches of amino acids</td>
</tr>
<tr>
<td>REPEAT</td>
<td>identifies the following repeats: Ankyrin, Armadillo, HAT, HEAT, Kelch, Leucine-rich, PFTA, PFTB, RCC1, TPR, WD40</td>
</tr>
</tbody>
</table>
Automatically selected results are returned in a graphical interface which allows visualisation of the predictions (Figure 1). Selected features are shown in green and unselected features are shown in red. The selected/unselected state of a feature can be toggled by clicking on it.

All predictions are manually reviewed and relevant results are selected for inclusion in the entry. The sequence analysis platform then transforms the selected features into UniProtKB annotation by applying a set of automatic annotation rules (Figure 2).

Literature Curation

- Identification of relevant scientific literature from:
 - literature and text mining resources (PubMed, Europe PMC, iHOP, TextPresso)
 - additions from other sources made by the curator

- Information is extracted form the full text:
 - general annotations (not position specific)
 - position specific annotations
General Annotations

- http://www.uniprot.org/help/general_annotation
- position-independent
- contains mostly general biological information like: functions, catalytic activity, cofactor, enzyme regulation, subunit structure, pathway,...
Sequence Annotations

- position dependent
- http://www.uniprot.org/help/sequence_annotation
- regions or sites of interest like post-translational modifications, binding sites, active sites, etc.
- contains several subsections: molecule processing, regions, sites, amino acid modifications, natural variants, experimental info, secondary structure
Family-based Curation

- Evaluation and curation of homologs as described above
- Standardization of annotation of homologs
- Propagation of annotation across the homologs to ensure consistency
Evidence Attribution

- Every annotation is attributed to its original source
- Every annotation can be traced back and evaluated
- For evidence distinction there are 7 codes from the Evidence Code Ontology (ECO) used for manually curated entries
 - http://www.uniprot.org/help/evidences
- Additional GO term annotation
There are seven ECO evidence codes used in manually curated entries as shown in Table 2.

<table>
<thead>
<tr>
<th>ECO code</th>
<th>Term name</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECO:0000269</td>
<td>experimental evidence used in manual assertion</td>
<td>Information for which there is published experimental evidence</td>
</tr>
<tr>
<td>ECO:0000303</td>
<td>non-traceable author statement used in manual assertion</td>
<td>Information based on author statements in scientific articles for which there is no experimental support</td>
</tr>
<tr>
<td>ECO:0000250</td>
<td>sequence similarity evidence used in manual assertion</td>
<td>Information which has been propagated from a related experimentally characterised protein</td>
</tr>
<tr>
<td>ECO:0000312</td>
<td>imported information used in manual assertion</td>
<td>Information which has been imported from another database and manually verified</td>
</tr>
<tr>
<td>ECO:0000305</td>
<td>curator inference used in manual assertion</td>
<td>Information which has been inferred by a curator based on his/her scientific knowledge or on the scientific content of an article</td>
</tr>
<tr>
<td>ECO:0000255</td>
<td>match to sequence model evidence used in manual assertion</td>
<td>Information originating from the UniProt automatic annotation systems or any of the sequence analysis programs used during the manual curation process and which has been manually verified</td>
</tr>
<tr>
<td>ECO:0000244</td>
<td>combinatorial evidence used in manual assertion</td>
<td>Information which is manually curated based on a combination of experimental and computational evidence</td>
</tr>
</tbody>
</table>

Quality Control and Integration

- Finished entries run through a series of rule-based checked concerning especially positions and regions
- All errors are corrected
- Manually reviewed by a senior curator
- Finally it is integrated into the database
- Unlock the finished entries for further curation
Demostration

- http://www.uniprot.org/uniprot/P62756#section_features
The Swiss-Prot Flat File

- An entry is composed by different line types
- Line types have their own format
- Follows EMBL Nucleotide Sequence Database format as close as possible
- 2 sections:
 - core data (sequence data, citation info, taxonomy)
 - annotations (function, modification, domains, secondary and quart structure, disease associations, conflicts, asf)
The following table lists the available two-letter line codes. Each code is followed by three blanks.

<table>
<thead>
<tr>
<th>Line Code</th>
<th>Content</th>
<th>Occurrence in an entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>Identification</td>
<td>Once; starts the entry</td>
</tr>
<tr>
<td>AC</td>
<td>Accession number(s)</td>
<td>Once or more</td>
</tr>
<tr>
<td>DT</td>
<td>Date</td>
<td>Three times</td>
</tr>
<tr>
<td>DE</td>
<td>Description</td>
<td>Once or more</td>
</tr>
<tr>
<td>GN</td>
<td>Gene name(s)</td>
<td>Optional</td>
</tr>
<tr>
<td>OS</td>
<td>Organism species</td>
<td>Once or more</td>
</tr>
<tr>
<td>OG</td>
<td>Organelle</td>
<td>Optional</td>
</tr>
<tr>
<td>OC</td>
<td>Organism classification</td>
<td>Once or more</td>
</tr>
<tr>
<td>OX</td>
<td>Taxonomy cross-reference</td>
<td>Once</td>
</tr>
<tr>
<td>OH</td>
<td>Organism host</td>
<td>Optional</td>
</tr>
</tbody>
</table>

--continued--
<table>
<thead>
<tr>
<th>Line Code</th>
<th>Content</th>
<th>Occurrence in an entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN</td>
<td>Reference number</td>
<td>Once or more</td>
</tr>
<tr>
<td>RP</td>
<td>Reference position</td>
<td>Once or more</td>
</tr>
<tr>
<td>RC</td>
<td>Reference comment(s)</td>
<td>Optional</td>
</tr>
<tr>
<td>RX</td>
<td>Reference cross-reference(s)</td>
<td>Optional</td>
</tr>
<tr>
<td>RG</td>
<td>Reference group</td>
<td>Once or more (Optional if RA line)</td>
</tr>
<tr>
<td>RA</td>
<td>Reference authors</td>
<td>Once or more (Optional if R line)</td>
</tr>
<tr>
<td>RT</td>
<td>Reference title</td>
<td>Optional</td>
</tr>
<tr>
<td>RL</td>
<td>Reference location</td>
<td>Once or more</td>
</tr>
<tr>
<td>CC</td>
<td>Comments or notes</td>
<td>Optional</td>
</tr>
<tr>
<td>DR</td>
<td>Database cross-references</td>
<td>Optional</td>
</tr>
<tr>
<td>PE</td>
<td>Protein existence</td>
<td>Once</td>
</tr>
<tr>
<td>KW</td>
<td>Keywords</td>
<td>Optional</td>
</tr>
<tr>
<td>FT</td>
<td>Feature table data</td>
<td>Once or more in Swiss-Prot, optional in TrEMBL</td>
</tr>
<tr>
<td>SQ</td>
<td>Sequence header</td>
<td>Once</td>
</tr>
<tr>
<td>(blanks)</td>
<td>Sequence data</td>
<td>Once or more</td>
</tr>
<tr>
<td>//</td>
<td>Termination line</td>
<td>Once; ends the entry</td>
</tr>
</tbody>
</table>
Fields in More Detail

- **ID line:**

 ID `EntryName Status; SequenceLength`.

- **EntryName:** up to 11 uppercase alphanumeric characters `X_Y`

 - `X` is a mnemonic code of at most 5 alphanumeric characters

 - `Y` is a mnemonic species identification code of at most 5 alphanumeric characters

- **ID CYC_BOVIN** Reviewed; 104 AA.
• **AC line:**
 AC AC_number_1;[AC_number_2;]...[AC_number_N;]

• **Accession number:** 6 or 10 characters

 1 2 3 4 5 6 7 8 9 10
 [A-N,R-Z] [0-9][A-Z] [A-Z, 0-9] [A-Z, 0-9] [0-9]
 [O,P,Q] [0-9][A-Z, 0-9] [A-Z, 0-9] [A-Z, 0-9] [0-9]
 [A-N,R-Z] [0-9][A-Z] [A-Z, 0-9] [A-Z, 0-9] [0-9][A-Z] [A-Z,0-9] [A-Z,0-9] [0-9]

• **RegEx:** [OPQ][0-9][A-Z0-9]{3}[0-9] | [A-NR-Z][0-9]
 ([A-Z][A-Z0-9]{2}[0-9]){1,2}

• **Examples:** P12345, Q1AAA9, A0A022YWF9
- DT line: date, DD-MMM-YYYY
- always one of the biweekly release dates
- always three lines:
 - date of integration
 - date of sequence version, sequence version X
 - date of entry version, entry version X
- Example:

 DT 01-FEB-1999, integrated into UniProtKB/TrEMBL.
DE lines:

- three categories and additional subcategories
- contains a recommended name
- besides: full name, short name, EC number
- alternative names: e.g. as an allergen or in biotechnology, ...
DE RecName: Full=Annexin A5;
DE Short=Annexin-5;
DE AltName: Full=Annexin V;
DE AltName: Full=Lipocortin V;
DE AltName: Full=Endonexin II;
DE AltName: Full=Calphobindin I;
DE AltName: Full=CBP-I;
DE AltName: Full=Placental anticoagulant protein I;
DE Short=PAP-I;
DE AltName: Full=PP4;
DE AltName: Full=Thromboplastin inhibitor;
DE AltName: Full=Vascular anticoagulant-alpha;
DE Short=VAC-alpha;
DE AltName: Full=Anchorin CII;
DE RecName: Full=Granulocyte colony-stimulating factor;
DE Short=G-CSF;
DE AltName: Full=Pluripotient;
DE AltName: Full=Filgrastim;
DE AltName: Full=Lenograstim;
DE Flags: Precursor;
● **OS line**: originating organism

● **OS** Homo sapiens (Human).

 ● **OS** Rous sarcoma virus (strain Schmidt-Ruppin A) (RSV-SRA) (Avian leukemia virus-RSA).

● **OC lines**: contain the taxonomic classification of the source organism according to (http://www.ncbi.nlm.nih.gov/Taxonomy/)

● **OC** Node[; Node...].

 ● **OC** Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

 ● **OC** Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae;

 ● **OC** Homo.
RN, RP, RC, RX, RG, RA, RT, RL

- can occur multiple time
- order in block fixed
- e.g:
 - RN [1]
 - RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORMS A AND C), FUNCTION, INTERACTION
 - RP WITH PKC-3, SUBCELLULAR LOCATION, TISSUE SPECIFICITY, DEVELOPMENTAL STAGE, AND MUTAGENESIS OF PHE-175 AND PHE-221.
 - RC STRAIN=Bristol N2;
 - RX PubMed=11134024; DOI=10.1074/jbc.M008990200;
 - RT "A novel adapter protein employs a phosphotyrosine binding domain and exceptionally basic N-terminal domains to capture and localize an atypical protein kinase C: characterization of Caenorhabditis elegans C kinase adapter 1, a protein that avidly binds protein kinase C3."
CC lines

- free text
- contains most of the annotated information
 - CC -!- TOPIC: First line of a comment block;
 CC second and subsequent lines of a comment block.
- structured by predefined topics like: Allergen, Alternative Products,.., Cofactor, ..., Disease, .. Domain,...., Function, Interaction,
ALLERGEN: Causes an allergic reaction in human. Minor allergen of bovine dander.

ALTERNATIVE PRODUCTS:
Event=Alternative initiation; Named isoforms=2;
Name=Alpha;
IsoId=P51636-1; Sequence=Displayed;
Name=Beta;
IsoId=P51636-2; Sequence=VSP_018696;

SUBCELLULAR LOCATION: Cell membrane {ECO:0000250}; Peripheral membrane protein {ECO:0000250}. Secreted {ECO:0000250}. Note=The last 22 C-terminal amino acids may participate in cell membrane attachment.

SUBCELLULAR LOCATION: Isoform 2: Cytoplasm {ECO:0000305}.
Cross References

- too many to enumerate
- extensive references with nucleotide databases,
 e.g.:
 in EMBL
 FT CDS 302..2674
 FT /protein_id="CAA03857.1"
 FT /db_xref="SWISS-PROT:P26345"
 FT /gene="recA"
 FT /product="RecA protein"

 in Swiss=Prot
 DR EMBL; AJ297977; CAC17465.1; -; Genomic_DNA.
 DR EMBL; X56491; CAA39846.1; ALT_FRAME; mRNA.
Key Words / Feature Table

- **KW** Keyword[; Keyword...].
- helps to search resp. index the database
- **no limits:**
 - KW 3D-structure; Alternative splicing; Alzheimer disease; Amyloid;
 - KW Apoptosis; Cell adhesion; Coated pits; Copper;
 - KW Direct protein sequencing; Disease mutation; Endocytosis;
 - KW Glycoprotein; Heparin-binding; Iron; Membrane; Metal-binding;
 - KW Notch signaling pathway; Phosphorylation; Polymorphism;
 - KW Protease inhibitor; Proteoglycan; Serine protease inhibitor; Signal;
 - KW Transmembrane; Zinc.

- **Feature table like GenBank/EMBL/DDBJ**
Programmatic Access

- http://www.uniprot.org/help/programmatic_access (remember this link!)
- several use cases documented
- best way: use the web interface to construct/refine your query first before you try to automate the process
Retrieving an Individual Entry

- uses simple URL which can be bookmarked
- for individual entries: http://www.uniprot.org/uniprot/P12345
- default result is a web page
- alternative formats: txt, xml, rdf, fasta, gff
- specified via the accession suffix
- structured formats like xml or rdf can include referenced entries
Using the ID mapping service

- http://www.uniprot.org/help/programmatic_access#batch_retrieval_perl_example
- uses http POST method
- converts between different database IDs
- you have to know the specific abbreviation for the respective databases
Retrieving Entries via Queries

- uses http GET method i.e.
- the query string is part of the URL
- structure might be quite complex
- use the browser to configure the query string
- more setting are available via the query builder
 http://www.uniprot.org/help/advanced_search
- the URL length might be limited to 1000 characters
Examples

- http://www.uniprot.org/uniprot/P12345.txt
- http://www.uniprot.org/uniprot/P12345.xml
- http://www.uniprot.org/uniref/UniRef90_P04259.xml
- http://www.uniprot.org/uniref/UniRef90_P04259.rdf
- http://www.uniprot.org/uniref/UniRef90_P04259.fasta
- http://www.uniprot.org/uniref/UniRef90_P04259.tab
Proteins API

- launched in 2017
- https://www.ebi.ac.uk/proteins/api/doc/
- allows access to UniprotKB and LSS (Large Scale Data Sources); returns xml or json
- provides protein and genomic information
- provided code fragments for your own applications