Protein Prediction 1 for Computational Biologists - Exercise

Exercise 1 - Introduction
Hi :)

Maria Schelling: maria.schelling@tum.de

PhD student @Rostlab

Contact me via email if you have any questions/problems
About the exercise

Time slot: Thursday, 14:00-15:30

Project: Prediction of per-residue features using high-resolution PDB structures and ProtVec

All results will be saved on our wiki, please also upload your code there

Content of the exercise will be part of the exam
General overview - subject to change

<table>
<thead>
<tr>
<th>Date</th>
<th>Exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.04.18</td>
<td>Introduction to ProtVec, dataset and features</td>
</tr>
<tr>
<td>26.04.18</td>
<td>Introduction to ProtVec in Python, data preparation</td>
</tr>
<tr>
<td>03.05.18</td>
<td>Introduction to ML in Python, decide on ML model, develop model</td>
</tr>
<tr>
<td>10.05.18</td>
<td>No exercise (Christi Himmelfahrt)</td>
</tr>
<tr>
<td>17.05.18</td>
<td>ML presentation and refinement, performance measurements</td>
</tr>
<tr>
<td>24.05.18</td>
<td>Performance evaluation</td>
</tr>
<tr>
<td>31.05.18</td>
<td>No exercise (Fronleichnam)</td>
</tr>
<tr>
<td>07.06.18</td>
<td>Present results, refinement</td>
</tr>
<tr>
<td>14.06.18</td>
<td>Final talks (with Burkhard Rost) [Tentative]</td>
</tr>
<tr>
<td>21.06.18</td>
<td>Final talks (with Burkhard Rost) [Tentative]</td>
</tr>
</tbody>
</table>
Features (1)

Secondary structure:

- experimental annotation taken from DSSP in 3 or 8 states
- X: unresolved structure, Y: conflicting annotations for different chains

Solvent accessibility:

- experimental annotation taken from DSSP (absolute solvent accessibility)
- normalized to relative solvent accessibility
Features (2)

B-Values:

- experimental annotation taken from BDB
- normalized to have a mean of 0 and a standard deviation of 1

Unresolved structure/disorder:

- X-characters in the secondary structure: residues without a measured structure in PDB → indicator for disorder
<table>
<thead>
<tr>
<th>Topic</th>
<th>Group members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction of secondary structure</td>
<td>Martin, Luna, Mariana, Binh</td>
</tr>
<tr>
<td>Prediction of solvent accessibility</td>
<td>Nathalie, Tatjana, Pia</td>
</tr>
<tr>
<td>Prediction of B-values</td>
<td>Sebastian, Joel, Nabil, Lukas</td>
</tr>
<tr>
<td>Prediction of disorder</td>
<td>Klaudia, Daniel, Florian, Luise</td>
</tr>
</tbody>
</table>
Tasks until next week

● familiarize yourself with ProtVec (and Word2Vec in general)
● familiarize yourself with your feature to be predicted
 ○ biological meaning of the feature?
 ○ how many states are possible?
 ○ how many states do you want to predict?
 ○ where did the data came from and how was it preprocessed?
 ○ what are problems/decisions you are facing when predicting this feature?
● familiarize yourself with the dataset
 ○ record simple statistics like the number of sequences and similar
 ○ distribution of your feature states in the dataset
Next exercise

● Present your results - except ProtVec
 ○ short presentation for each group
 ○ 10 minutes, max. 5 slides

● Q&A about ProtVec

● You will get access to the wiki page
 ○ after that: put all information to this page
Material

● ProtVec:

● Dataset (sequences + feature):
 ○ Secondary structure: www.rostlab.org/~evcfunc/dssp8.tar.gz
 ○ Solvent accessibility: www.rostlab.org/~evcfunc/rel_asa.tar.gz
 ○ B-value: www.rostlab.org/~evcfunc/bdb_bval.tar.gz
 ○ Disorder: www.rostlab.org/~evcfunc/disorder.tar.gz
 ○ some of the targets saved as “memmap” - can be read with python using the following code:

```python
import numpy as np
np.memmap(path, dtype=np.float32, mode='r', shape=shape)  # path: path to memmap file
# shape: length of corresponding input sequence
```