Protein Prediction

Exercise

22.06.2017
Hi, I'm Michael Bernhofer.

PhD student @ Rostlab

Email: bernhoferm@rostlab.org
Reminder: \(k \)-fold cross-validation

- Split data set into \(k \) folds (equal size):
 - Train on first \(k-2 \) folds (train)
 - Optimize on fold \(k-1 \) (cross-train)
 - Evaluate on fold \(k \) (test)
 - Rotate & repeat \(k \) times

- Never make decisions on the test set!

- Better: make one split you never use until final evaluation
 - Only viable if enough data
Reminder: Redundancy reduction

• Make sure your data is non-redundant
 • No identical/similar sequences
 • Use CD-Hit (if necessary) and Uniqueprot (HVAL 0)

• Not enough training data?
 • May allow similar sequences in train set
 • But not in cross-train/test
 • Check redundancy between train & cross-train/test!
Feature selection I

• Why?
 • Help the algorithm find the best features
 • Some features might be redundant/noisy/random
 • Reduce complexity of model (takes less space/time)

• Use cross-train set to select, never test set!

• How?
 • Manual selection or automatic methods
 • Due to time constraints: use Scikit learn or WEKA
Feature selection II: Scikit learn

- Methods:
 - Remove low variance features
 - Univariate feature selection
 - Recursive feature elimination (uses external model)
 - Feature importance (after training)

- Online documentation:
Feature selection III: WEKA

- Go to "Select attributes" tab or use "AttributeSelectedClassifier"
Parameter tuning I

- Neural networks
 - # of hidden units
 - Learning rate
 - Momentum

- Random forest
 - # of trees
 - # of randomly selected attributes
 - Size of random sub-sample
Parameter tuning II

• Again: do not optimize on test set!

• Scikit learn (online documentation):

• WEKA:
 • Meta-Classifier: "CVParameterSelection"
Performance evaluation I

- Accuracy (how many predictions are correct)
 - \(a = \frac{\text{correct predictions}}{\text{total predictions}} \)

- Which one is better?
 - Method A: 65% accuracy
 - Method B: 67% accuracy

- What’s the estimated error?
 - Method A: 65\(\pm 5 \)% accuracy
 - Method B: 67\(\pm 5 \)% accuracy
Performance evaluation II

• How to estimate error?

• Use bootstrapping:
 • Create random subset of your test samples
 • Either: \(\sim 60\% \) of test samples (without replacement)
 • Or: 100\% of test samples (with replacement)
 • Compute performance statistic \(x \)
 • Repeat \(N \) times
 • Calculate standard deviation:

\[
s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}
\]
Performance evaluation III

- Other statistics?

- Precision (how many “positive” predictions are correct)

 \[p = \frac{\text{true positives}}{\text{true positives} + \text{false positives}} \]

- Recall (how many “positive” cases did we find)

 \[r = \frac{\text{true positives}}{\text{true positives} + \text{false negatives}} \]

- Positives: e.g. “metal-binding residue“
Performance evaluation IV

- Method A:
 - Recall = 80%
 - Precision 90%

- Method B:
 - Recall = 80%
 - Precision 60%

- Which one is better (ignoring error)?
Performance evaluation V

• Look at confusion matrix!

<table>
<thead>
<tr>
<th></th>
<th>Method A</th>
<th></th>
<th>Method B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Predicted as 1</td>
<td>Predicted as 2</td>
<td>Predicted as 1</td>
</tr>
<tr>
<td>Real class 1</td>
<td>80</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>Real class 2</td>
<td>9</td>
<td>1</td>
<td>53</td>
</tr>
</tbody>
</table>

False positive rate (FPR)
• Method A: 90%
• Method B: 30%
Performance evaluation VI

- Lesson to learn:
 - Use multiple measurements
 - Compute error estimate
 - Look at confusion matrix
 - Compare to random/baseline
Putting it all together

• Combine your \(k \) models into one predictor
 • Use either majority vote or average prediction score

• If you have a hold-out set
 • Combine your features & parameters
 • All features used for the different models
 • Average parameter values
 • Train on all CV folds
 • Test final model on hold-out set
Task for next week

• Build and optimize your models
 • Which algorithm (neural network, random forest, etc.)
 • What are the best features

• Evaluate your model’s performance

• If you have the time:
 • Can you see some trends?
 • What proteins/binding-types work best/worst?