title: Computational Biology 1 - Protein structure:

Intro: 3D comparisons

short title: cb1_intro_3dcompare

lecture: Protein Prediction 1 - Protein structure
Computational Biology 1 - TUM Summer 2015
Protein Prediction - Part 1: Structure

1 Introduction (contd.)
Notation: protein structure 1D, 2D, 3D

Notation: protein structure 1D, 2D, 3D
Notation: protein structure 1D, 2D, 3D
Comparing 3D structures
Blue and red similar?

Doyle et al. (1998) Science 280:69-77 - The structure of the potassium channel: molecular basis of K+ conduction and selectivity
Similarity now clear?

Doyle et al. (1998) Science 280:69-77 - The structure of the potassium channel: molecular basis of K+ conduction and selectivity
3D comparisons: how to?
Matching shapes

How to match?
How to match?
Differences for corresponding points

Difference
= d1+d2+d3...+d8
= |r1a-r1b|+...+|r8a-r8b|

RMSD (root mean square deviation)
=SQRT [(r1a-r1b)^2+...(r8a-r8b)^2]

\[RMSD(A, B) = \sqrt{\sum_{i} (r_i^A - r_i^B)^2} \]
Differences for corresponding points

\[\text{RMSD}(A, B) = \sqrt{\sum_i \left(r_i^A - r_i^B \right)^2} \]
Actual algorithm inversed

☐ 1st: find corresponding points
☐ 2nd: superimpose

$$RMSD(A, B) = \sqrt{\sum_i (r_i^A - r_i^B)^2}$$
fit now?
Scaling easy for simple shapes

\[x^2 + y^2 = r^2 \]
Proteins: points are defined->no scaling

Global vs. local comparisons
Global vs. local comparisons
Global vs. local comparisons

global solution 1:

global solution 2:
cut into "units"
cut into “units”
trouble: where to stop?

valid “unit” for comparison?
How to decide what is a valid unit?
Decision upon validity

valid “unit” for comparison?
Valid or not?

☐ Scientifically significant: some expert says
Valid or not?

- Scientifically significant: some expert says
- Statistically significant: background

[Graph showing distribution of counts with signal and background peaks]
Cut, match, compare by RMSD

\[\text{RMSD}(A, B) = \sqrt{\sum_{i} (r_i^A - r_i^B)^2} \]
Only Cartesian RMSD comparison?

\[\text{RMSD}(A, B) = \sqrt{\sum_i (r_i^A - r_i^B)^2} \]
2D: difference matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

```
 8 7
 6
 5
 4
 3
 2
 1
```

© Burkhard Rost

ROSTLAB

TUM
Comparison 2D: differences of differences

Total of 8 x 8 differences
3D comparisons: biology
Structure alignment

Slides taken from Patrice Koehl, UC Davis

Patrice Koehl
Structure alignment: two steps

1. Identify equivalent positions (residues that match in 3D)
2. Find superposition independent of domain movements

Root mean square displacement (rmsd)

- Step 1: find corresponding points in proteins A and B
- $d(i)$ are the distances between all corresponding points (typic: Cα, all atoms)

$$\text{rmsd}(A,B) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} d^2_{\text{C}\alpha, \text{all atoms}}}$$
RMSD is not a metric

A similar B
B similar C
NOT implying:
A similar C

cRMSD = 2.8 Å = 0.28 nm
cRMSD = 2.85 Å = 0.285 nm
SSAP
3D alignment
Taylor & Orengo
SSAP concept

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22

\[S_{ik} = \sum_{m=-n}^{m=+n} \left| d_{i,i+m}^A - d_{k,k+m}^B \right| + b \]
SSAP concept

WR Taylor & CA Orengo (1989)
Protein structure alignment
JMB 208:1-22

\[S_{ik} = \sum_{m=-n}^{m=n} \frac{a}{|d_{i,i+m}^A - d_{k,k+m}^B|} + b \]

Problem: loss of information about direction
DALI
3D alignment
Holm & Sander
Structural alignment: **DALI**

- Distance matrix Alignment
- Algorithm: Monte Carlo on all-against-all for hexapeptides (5)
Vorolign
3D alignment
Birzele & Zimmer
Structural alignment: VOROLIGN

- Dynamic programming on Voronoi environments

F Birzele, JE Gewehr, G Csaba & R Zimmer (2006) Bioinformatics 23:e205-11: Fig. 2
3D comparisons: others
Two forms of calcium-bound Calmodulin:

Ligand free

Complexed with trifluoperazine
Global alignment:
RMSD = 15 Å / 143 residues

Local alignment:
RMSD = 0.9 Å / 62 residues

Structure alignment methods

- **SSAP**
 WR Taylor & CA Orengo 1989 JMB 208:1-22

- **DALI**
 L Holm & C Sander 1993 JMB 233:123-38

- **STRUCTAL**

- **CE**
 IN Shindyalov & P Bourne 1998 Prot Engng 1:739-47

- **VAST**

- **LSQMAN**

- **SSM**

- **SKAN**
 A Yan, D Petrey & B Honig, unpublished

- ...
Comparison of structure alignments

Rachel Kolodny, Patrice Koehl, Michael Levitt

Rachel Kolodny
Univ of Haifa

Patrice Koehl
UC Davis

Michael Levitt
Stanford Univ

Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures
JMB 346:1173-88
How to assess 3D comparisons? standard-of-truth?
Comparison of structure alignments

R Kolodny, P Koehl & M Levitt (2004) JMB 346:1173-88 (Fig. 1A)

dashed lines: original method
solid lines: SAS measure
Comparison of structure alignments

dashed lines: original method
solid lines: SAS measure

JMB 346:1173-88
(Fig. 1A)

Best-of-All
3D comparisons: protein space and databases
Structural universe
Unit of the universe: a domain
3D modules

Multiple 3D alignment identifies consensus secondary structure
Guessing domains from sequence

protein A
protein B
protein C
protein D
protein E
protein F

domain 1 domain 2
Structural universe

B Rost 1998 *Structure* 6:259-263
Evolution of pieces

Fig 1: Proteins from pieces. Panel A shows two building block types, the αα-hairpin and the ββ-hairpin, and panel B protein domains formed by their repetition.

© Andrei Lupas MPI Tuebingen
Structure evolves without leaps?

Fig. 1: NV Grishin 2001 NAR 29:638-43

© Nick V Grishin HHMI + Univ Dallas
Structural universe: no islands, really

B Rost 1998 Structure 6:259-263
3D classifications: goals

- Similar 3D -> Similar function
- Learn from 3D about function
- Learn about evolution

classify
3D modules

Multiple 3D alignment identifies consensus secondary structure

© Christine Orengo
Fold of a protein

- Some structures more often observed than others
- Limited number of shapes?
- Fold remains an assumption (that increasingly seems to be proven inappropriate)
Protein structure comparisons

All-alpha

All-beta

AlphaBeta

3sdh

1bww

1xne
How to recognize the similarity?
3D classification databases

- **SCOP**

 http://scop.mrc-lmb.cam.ac.uk/scop/
 [A Murzin et al. (1995) JMB 247, 536-540]

- **CATH**

 http://www.cathdb.info/

- **COPS - QSCOP - TopMatch**

 http://cops.services.came.sbg.ac.at
 [SJ Suhrer et al. (2009) NAR 37, W539-W44.]
Classify protein structure: SCOP
3D classification databases

- SCOP
 - http://scop.mrc-lmb.cam.ac.uk/scop/
 - [Murzin et al. J. Mol. Biol. 247, 536-540]

- hierarchy
Protein structure comparisons

All-alpha
3sdh

All-beta
1bww

AlphaBeta
1xne
SCOP hierarchy

Example

{All-alpha}

a.

class

Structure similarity increases
SCOP classes

- alpha
- beta
- alpha and beta (a/b – interspersed)
- alpha plus beta (a+b – segregated)
- multidomain proteins
- membrane and cell-surface proteins
- small proteins
- coiled coil proteins
- low-resolution protein structures
- peptides
- designed proteins
SCOP class

CLASS = alpha and beta (a/b)

NAD(P)-binding Rossmann-fold domains 1sw0-TIM

1sw0-TIM beta/alpha barrel
SCOP hierarchy

Example

{All-alpha}

{Globin-like}

a.

class

a.1

fold

Structure similarity increases
SCOP fold definition

- same major secondary structures
 - in the same arrangement
 - with the same topological connections

- peripheral elements may differ
 - up to 50% peripheral
 - Turns and secondary structure elements

- evolutionary relationship unclear
SCOP fold

CLASS = alpha and beta (a/b)
FOLD = TIM beta/alpha-barrel
Structural universe: no islands, really

B Rost 1998 Structure 6:259-263
SCOP hierarchy

Example

{All-alpha}

{Globin-like}

{alpha-helical ferredoxin}

a. class

a.1 fold

a.1.2 superfamily

Structure similarity increases
probable common evolutionary origin
low similarities, but
• share the same fold
• have similar functions
SCOP hierarchy

TRIOSEPHOSPHATE ISOMERASE (1swo)

QUINOLINIC ACID PHOSPHORIBOSYLTRANSFERASE (1gap)

PHOSPHATE ALDOLASE (1p1x)
SCOP hierarchy

Example

{Alpha and beta a/b}

{TIM beta/alpha-barrel}

{Triosephosphate isomerase}

\[\text{c} \quad \text{class} \]

\[\text{c.1} \quad \text{fold} \]

\[\text{c.1.1} \quad \text{superfamily} \]

\[\text{c.1.1.1} \quad \text{family} \]

(sequence based)

Structure similarity increases
SCOP family definition

- clearly evolutionary relation
- Sequence identity often >30%, but not necessarily, e.g. globins:
 < 15% sequence identity for some members
3D classification databases

SCOP

http://scop.mrc-lmb.cam.ac.uk/scop/
[Murzin et al. J. Mol. Biol. 247, 536-540]
Classify protein structure: CATH
3D classification databases

- **SCOP**
 - http://scop.mrc-lmb.cam.ac.uk/scop/
 - [Murzin et al. J. Mol. Biol. 247, 536-540]

- **CATH**
 - http://www.cathdb.info/
 - [AL Cuff et al. (2009) NAR 37, D310-314; CA Orengo et al. (1997) Structure 15, 1093-1108]
Universe of protein structures

Christine Orengo et al. 1997 *Structures* 5 1093-1108
CATH

☐ Class
☐ Architecture
☐ Topology
☐ Homology
Class:
mostly alpha, mostly beta, mixed alpha/beta, few regular secondary structure
CATH

☐ Class:
mostly alpha, mostly beta, mixed alpha/beta, few regular secondary structure

☐ Architecture:
classification according to overall shape, ignoring connectivity

☐ Topology:
fold groups = shape & connectivity

☐ Homology:
evolutionarily related superfamily
<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>folds</td>
<td>1,282</td>
</tr>
<tr>
<td>superfamilies</td>
<td>2,549</td>
</tr>
<tr>
<td>sequence families</td>
<td>11,330</td>
</tr>
<tr>
<td>domains</td>
<td>24,232</td>
</tr>
</tbody>
</table>
CATH: steps involved

☐ Find domain

Multiple 3D alignment identifies consensus secondary structure
Find domains

- **ab initio: consensus of three methods:**
 - DETECTIVE: hydrophobic interior
 - PUU: likely separation motion
 - DOMAK: count internal and external contacts
- **Problem:** only 20% consistent!

- **Based on prior knowledge: CATHEDRAL**
 - GT: secondary structure matching
 - DDP: structural alignment

CATH: steps involved

- Find domain
- From domain to superfamily

PDB id: 1gcq
(SH3 domains)

PDB id: 1gcqA0
(SH3 domain)

© CATH tutorial (www.cathdb.info)
CATH: steps involved

Find domain

PDB id: 1gcqA0
(SH3 domain)

CATH Domain: 1gcqA0

<table>
<thead>
<tr>
<th>CATH Code</th>
<th>Level Description</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.30.30</td>
<td>SH3 type barrels</td>
<td>Gene3D</td>
</tr>
<tr>
<td>2.30.40.22</td>
<td>SH3 Domains</td>
<td></td>
</tr>
</tbody>
</table>

http://www.cathdb.info/domain/1gcqA0

© CATH tutorial (www.cathdb.info)
CATH vs SCOP

- 70% of proteins in PDB have similar domains at 80% residue domain overlap.

Table 4: Detailed mappings of domain pairs in percent from SCOP onto CATH

<table>
<thead>
<tr>
<th></th>
<th>outer</th>
<th>class</th>
<th>fold</th>
<th>superfamily</th>
<th>family</th>
</tr>
</thead>
<tbody>
<tr>
<td>outer</td>
<td>79.38%</td>
<td>8.31%</td>
<td>0.99%</td>
<td>0.40%</td>
<td>0.03%</td>
</tr>
<tr>
<td>class</td>
<td>18.16%</td>
<td>56.15%</td>
<td>2.55%</td>
<td>1.88%</td>
<td>0.87%</td>
</tr>
<tr>
<td>arch</td>
<td>2.42%</td>
<td>24.90%</td>
<td>2.80%</td>
<td>1.27%</td>
<td>0.09%</td>
</tr>
<tr>
<td>top</td>
<td>0.04%</td>
<td>10.50%</td>
<td>81.99%</td>
<td>4.44%</td>
<td>0.66%</td>
</tr>
<tr>
<td>hom</td>
<td>0.002%</td>
<td>0.14%</td>
<td>11.66%</td>
<td>92.01%</td>
<td>98.34%</td>
</tr>
</tbody>
</table>

CATH: 50 structures - 1 superfamily

superfamily 3.40.640.10

Type I PLP-dependent aspartate aminotransferase-like (Major domain)
Rank by family size

Percentage of all domain sequences

Remaining families (new BIG)

BIG families (currently Pfam)

Structural families
(i.e. one or more solved structures CATH/SCOP)
3D classification databases

- SCOP
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [Murzin et al. J. Mol. Biol. 247, 536-540]

- CATH
 http://www.cathdb.info/
Classify protein structure: COPS/QSCOP/TopMatch
COPS hierarchy

- COPS = Classification Of Protein Structures
- Based on quantified structural comparison
- 2007: additional info for SCOP domains: qSCOP
- 2009: workbench based on PDB chains: TopSearch
 http://topsearch.services.came.sbg.ac.at/

COPS metric

Triangle inequality/transitivity:

\[A \approx B \] (A similar to B)
\[B \approx C \] (B similar to C)

\[\not\Rightarrow B \approx C \] (does not imply: A similar to C)
PDB updates 2008/08/19-2009/04/14

novelty:

SJ Suhrer et al. (2009) NAR 37:W539-W544
PDB diversity in light of COPS

SJ Suhrer et al. (2009) NAR 37:W539-W544
COPS domain parsing

Apaf-1
PDB id 1z6t

SJ Suhrer et al. (2009) NAR 37:W539-W544

COPS c1z6tA1 (CARD domain) - c2a5yB1

COPS c1z6tA2 (α/β domain) - c2a5yB

COPS c1z6tA3 (helical domain I) - c2a5yB3

COPS c1z6tA4 (winged-helix domain) - c2a5yB4
COPS domain parsing

PDB id
1z6t-A
with 2a5y-B

SJ Suhrer et al. (2009) NAR 37:W539-W544
COPS <-> TopSearch

- No domain decomposition
- But:
 - Complete structure comparisons
 - Biological units
 - New metric

3D classification databases

- SCOP
 http://scop.mrc-lmb.cam.ac.uk/scop/
 [A Murzin et al. (1995) JMB 247, 536-540]

- CATH
 http://www.cathdb.info/

- COPS
 http://cops.services.came.sbg.ac.at
 [SJ Suhrer et al. (2009) NAR 37, W539-W44.]
3D classification databases

- **SCOP**

 http://scop.mrc-lmb.cam.ac.uk/scop/
 A Murzin et al. 1995 JMB:247, 536-540

 Alexey Murzin et al, Cambridge UK

- **CATH**

 http://www.cathdb.info/
 AL Cuff et al. 2009 NAR 37:D310-314;
 CA Orengo et al. 1997 Structure 15:1093-1108

 Christine Orengo & Janet Thornton et al, UCL UK

- **COPS**

 http://cops.services.came.sbg.ac.at
 SJ Suhrer et al. 2009 NAR 37:W539-W44

 Manfred Sippl et al. Salzburg