Protein Prediction
- Part 1: Structure
Definitions

- **Computational Biology**
 - biology replacing experiments by computers (include neurobiology, image processing)

- **Bioinformatics**
 - anything that has to do with storing and using the information about bio-sequences

- http://www.rostlab.org/talks/
2013 Nobel Prizes in Chemistry
2013 Nobel Prize in Chemistry

“for the development of multiscale models for complex chemical systems” (nobelprize.org)

Martin Karplus
Harvard Univ, USA & Univ Strasbourg, France

Michael Levitt
Stanford Univ, USA

Arieh Warshel
USC, Los Angeles, USA

© Burkhard Rost (TU Munich)
Protein structure comparisons

All-alpha

All-beta

AlphaBeta

3sdh

1bww

1xne
Predict protein function
Classical physics vs quantum physics

Figure 1
Figure 1 Multi-copper-oxidase embedded in water.¹

¹ For a detailed explanation of this figure, please refer to the NobelPrize.org website:
Classical physics vs quantum physics

A Warshel & M Levitt (1976) JMB 103, 227

Figure 3. To understand how lysozyme cleaves a glycoside chain, it is necessary to model only the relevant parts of the system using quantum chemistry, while most of the surrounding may be treated using molecular mechanics or a continuum model. The figure is adapted from A Warshel & M Levitt (1976) JMB 103, 227.
Classical physics vs quantum physics

Figure 4. The detailed structure of a polypeptide chain (top) is simplified by assigning each amino acid residue with an interaction volume (middle) and the resulting string-of-pearls like structure (bottom) is used for the simulation.

Michael Levitt (AP): It’s sort of nice ... to see that computational science, computational biology is being recognized. ... It’s become a very large field and it’s always in some ways been the poor sister, or the ugly sister, to experimental biology.

Arieh Warshel (NobelPrize) [experimental results are] like seeing a watch and wondering how actually it works. ... what we developed is a way which requires a computer to look ... and then to eventually understand how exactly [a protein] does what it does.
Who are we?
Some Professional Positions

- **Professor** for Computational Biology, TUM, Dept. Computer Science
- **Fellow** Institute of Advanced Studies, TUM
- **Affiliate professor** @ Columbia University in the City of New York, College for Physicians and Surgeons, Dept. Biochemistry and Molecular Biophysics
- **Member of New York Structural Biology Center**, City College New York
Study complex systems

 Master: Neuronal networks
 (Heidelberg, Bochum, Princeton, Harvard, UCSF)
- 1989-1995: PhD/Postdoc: Application of physics to
 Computational Biology, EMBL (European Molecular Biology
 Laboratory, Heidelberg)
- 1995-1996: European Bioinformatics Inst. (EBI), Cambridge, UK
- 1998: LION Biosciences
- 1998-now: Professor at Columbia University, New York
 (tenure since 2005)
- 2009: Alexander von Humboldt professorship
- 2009-now: Professor at TUM, Chair for Comp. Biology
Nothing makes me happier than to be proven wrong.
My passion is my job
Little $, but attention, friends, travel, fun
Little $, but attention, friends, travel, fun

- Seminars on 5 continents
 Dec 2009 - 2011
 (TV in 4: USA, Mali, Uruguay, Germany)
Little $, but attention, friends, travel, fun

- Seminars on 5 continents
 Dec 2009 - 2011
 (TV in 4: USA, Mali, Uruguay, Germany)
- 140 invited talks in 21 countries
Little $, but attention, friends, travel, fun

- Seminars on 5 continents
 Dec 2009 - 2011
 (TV in 4: USA, Mali, Uruguay, Germany)
- 140 invited talks in 21 countries
- 197 publications, 150 peer-reviewed
Little $, but attention, friends, travel, fun

- Seminars on 5 continents
 Dec 2009 - 2011
 (TV in 4: USA, Mali, Uruguay, Germany)
- 140 invited talks in 21 countries
- 197 publications, 150 peer-reviewed
- > 25,000 citations to our work; H-index > 55
Little $, but attention, friends, travel, fun

- Seminars on 5 continents
 Dec 2009 - 2011
 (TV in 4: USA, Mali, Uruguay, Germany)
- 140 invited talks in 21 countries
- 197 publications, 150 peer-reviewed
- > 25,000 citations to our work;
 H-index > 55
- google.com “rost”
Rostlab & friends @ ISMB/ECCB Berlin

www.rostlab.org
Contact: Lothar Richter: teaching@rostlab.org
Tim Karl

Contact: Tim Karl: karl@rostlab.org

Videos/Sysadmin

How sysadmin gets you started into studying Bioinformatics....
Exercises

- PhD students in group:
 - Tatyana Goldberg
 - Max Hecht
 - Lothar Richter

Contact: see www.rostlab.org

http://rostlab.org/cms/teaching/
Contact: Marlena Drabik:
assistant@rostlab.org
Foundations
What is this?
What is similar?
What is similar?
What is similar?

silicone

© Wikipedia

glass

© http://www.lionsons.com

© Burkhard Rost (TU Munich)
What is this?

Diamond

Graphite/coal

© Wikipedia
What is this?

Diamond

Graphite/coal

carbon

diamond lattice

© Wikipedia
What is this?

Diamond

Graphite/coal

carbon

diamond lattice

© Wikipedia
Periodic table

<table>
<thead>
<tr>
<th>Group→1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period 1</td>
<td>1</td>
<td>H</td>
<td>3</td>
<td>Li</td>
<td>4</td>
<td>Be</td>
<td>11</td>
<td>Na</td>
<td>12</td>
<td>Mg</td>
<td>19</td>
<td>K</td>
<td>20</td>
<td>Ca</td>
<td>21</td>
<td>Sc</td>
<td>22</td>
</tr>
<tr>
<td>Period 2</td>
<td>57</td>
<td>La</td>
<td>58</td>
<td>Ce</td>
<td>59</td>
<td>Pr</td>
<td>60</td>
<td>Nd</td>
<td>61</td>
<td>Pm</td>
<td>62</td>
<td>Sm</td>
<td>63</td>
<td>Eu</td>
<td>64</td>
<td>Gd</td>
<td>65</td>
</tr>
<tr>
<td>Period 3</td>
<td>89</td>
<td>Ac</td>
<td>90</td>
<td>Th</td>
<td>91</td>
<td>Pa</td>
<td>92</td>
<td>U</td>
<td>93</td>
<td>Np</td>
<td>94</td>
<td>Pu</td>
<td>95</td>
<td>Am</td>
<td>96</td>
<td>Cm</td>
<td>97</td>
</tr>
<tr>
<td>Period 4</td>
<td>5</td>
<td>B</td>
<td>6</td>
<td>C</td>
<td>7</td>
<td>N</td>
<td>8</td>
<td>O</td>
<td>9</td>
<td>F</td>
<td>10</td>
<td>Ne</td>
<td>13</td>
<td>Al</td>
<td>14</td>
<td>Si</td>
<td>15</td>
</tr>
<tr>
<td>Period 5</td>
<td>37</td>
<td>Rb</td>
<td>38</td>
<td>Sr</td>
<td>39</td>
<td>Y</td>
<td>40</td>
<td>Zr</td>
<td>41</td>
<td>Nb</td>
<td>42</td>
<td>Mo</td>
<td>43</td>
<td>Tc</td>
<td>44</td>
<td>Ru</td>
<td>45</td>
</tr>
<tr>
<td>Period 6</td>
<td>55</td>
<td>Cs</td>
<td>56</td>
<td>Ba</td>
<td>*</td>
<td>72</td>
<td>Hf</td>
<td>73</td>
<td>Ta</td>
<td>74</td>
<td>W</td>
<td>75</td>
<td>Re</td>
<td>76</td>
<td>Os</td>
<td>77</td>
<td>Ir</td>
</tr>
<tr>
<td>Period 7</td>
<td>**</td>
<td>104</td>
<td>Rf</td>
<td>105</td>
<td>Db</td>
<td>106</td>
<td>Sg</td>
<td>107</td>
<td>Bh</td>
<td>108</td>
<td>Hs</td>
<td>109</td>
<td>Mt</td>
<td>110</td>
<td>Ds</td>
<td>111</td>
<td>Rg</td>
</tr>
</tbody>
</table>

© Wikipedia
What elements make most of our body?
What elements make most of our body?

H₂O - water

how much?
What elements make most of our body?

H2O - water

about 50-65% in adults
Which ones/how many make up life?

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18				
H	Li	Be	B	C	N	O	F	Ne	Na	Mg	Al	Si	P	S	Cl	Ar	K	Ca			
19	20	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr				
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe				
Cs	Ba	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu					
Fr	Ra	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr					

© Wikipedia

| |
| 1-15 | 16-30 | 31-45 | 46-60 | 61-75 | more |

© Burkhard Rost (TU Munich)
Which ones make up life?

- **oxygen** - O: 65.00%
- **hydrogen** - H: 9.70%
- **body weight**: 96.5%

© Wikipedia
Which ones make up life?

<table>
<thead>
<tr>
<th>Element</th>
<th>% of Body Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxygen - O</td>
<td>65.00</td>
</tr>
<tr>
<td>carbon - C</td>
<td>18.60</td>
</tr>
<tr>
<td>hydrogen - H</td>
<td>9.70</td>
</tr>
<tr>
<td>nitrogen - N</td>
<td>3.20</td>
</tr>
<tr>
<td>calcium - Ca</td>
<td>1.80</td>
</tr>
<tr>
<td>phosphorus - P</td>
<td>1.00</td>
</tr>
<tr>
<td>body weight</td>
<td>96.5</td>
</tr>
</tbody>
</table>

© Wikipedia
Which ones make up life?

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen - O</td>
<td>65.00</td>
</tr>
<tr>
<td>Carbon - C</td>
<td>18.60</td>
</tr>
<tr>
<td>Hydrogen - H</td>
<td>9.70</td>
</tr>
<tr>
<td>Nitrogen - N</td>
<td>3.20</td>
</tr>
<tr>
<td>Calcium - Ca</td>
<td>1.80</td>
</tr>
<tr>
<td>Phosphorus - P</td>
<td>1.00</td>
</tr>
<tr>
<td>Potassium - K</td>
<td>0.40</td>
</tr>
<tr>
<td>Sodium - Na</td>
<td>0.20</td>
</tr>
<tr>
<td>Chlorine - Cl</td>
<td>0.20</td>
</tr>
<tr>
<td>Magnesium - Mg</td>
<td>0.10</td>
</tr>
<tr>
<td>Sulfur - S</td>
<td>0.05</td>
</tr>
<tr>
<td>Iron - Fe</td>
<td>0.03</td>
</tr>
<tr>
<td>Iodine - I</td>
<td>0.03</td>
</tr>
<tr>
<td>Body weight</td>
<td>96.5</td>
</tr>
</tbody>
</table>

© Wikipedia
What is this?
What is this?

Escherichia coli

© Wikipedia
What is this?

Escherichia coli

© Wikipedia
What is this?

Escherichia coli /E coli
What is this?
What is this?

Streptococcus
What is this?
What is this?

Salmonella bongori © Wikipedia
What is this?

What is this?

Avian or bird flu (virus)

What is this?
What is this?

HIV virus

What is this?
Velcro - invented by George de Mestral

George de Mestral (1907-1990)

- Swiss electrical engineer
- Invented velcro 1949

http://www.engr.sjsu.edu/WofMatE/polymers.htm

© Wikipedia

© Burkhard Rost (TU Munich)
Velcro copied from plants

http://www.engr.sjsu.edu/WofMatE/polymers.htm

George de Mestral
(1907-1990)

- swiss electrical engineer
- invented velcro 1949

© Wikipedia
Bacteria differ in shape

- Cocci:
 - coccus
 - diplococci
 - diplococci encapsulated: Pneumococcus
 - Staphylococci
 - streptococci
 - sarcina
 - tetrad

- Bacilli:
 - coccobacillus
 - bacillus
 - diplobacilli
 - palisades
 - Streptobacilli

- Others:
 - enlarged rod: Fusobacterium
 - Vibrio
 - Comma's form: Bdellovibrio
 - Club Rod: Corynebacteriaceae
 - Helical form: Helicobacter pylori
 - Corkscrew's form: Borrelia burgdorferi
 - Filamentous
 - spirochete

© Wikipedia

© Burkhard Rost (TU Munich)
What do they have in common?

Cocci
- coccus
- diplococci
- diplococci encapsulated
- Staphylococci
- sarcina
- tetrad

Bacilli
- coccobacillus
- bacillus
- diplobacilli
- palisades.
- Streptobacilli

Others
- enlarged rod
- Fusobacterium
- Vibrio
- Comma’s form
- Bdellovibrio
- Club Rod
- Corynebacteriaceae
- Helical form
- Helicobacter pylori
- Corkscrew’s form
- Borrelia burgdorferi
- Filamentous
- spirochete

© Wikipedia

Wednesday April 9, 2014
Common to bacteria: single cells

© Wikipedia
Cells

Eukaryote
- Membrane-enclosed nucleus
- Nucleolus
- Mitochondrion
- Ribosomes
- Cell Membrane

Prokaryote
- Nucleoid
- Capsule (some prokaryotes)
- Flagellum
- Cell Wall (in some eukaryotes)

© Wikipedia
Do we carry bacteria?

Leonardo Da Vinci (1452-1519)
Vitruve Luc Viatour (~1492)
we carry bacteria when we are sick
Our bodies are teeming with bacteria

© NATURE REVIEWS
MICROBIOLOGY 9:244-53,
COPYRIGHT 2011
Life is diverse

Trilobite Bergeroniellus spinosus
Lena River Gorge, Siberia
http://www.emory.edu/COLLEGE/ENVS/research/ichnology
DNA/Gene

www.chemistryexplained.com

© Wikipedia

© Burkhard Rost (TU Munich)
Where do we have genes?
Where do we have genes?
Genes in nucleus and mitochondria

green: cell (actin) © Wikipedia
red: mitochondria
blue: nucleus
Genes in nucleus and mitochondria

green: cell (actin)
red: mitochondria
blue: nucleus

Anatomy of a Cell

© Wikipedia
Genes are it: what are proteins?
Central dogma of molecular biology

DNA ➔ RNA ➔ Protein

information, code, library, manual

intermediate step

machinery of life

© Laszlo Kajan, TUM
Central dogma of molecular biology

DNA → RNA → Protein

information, code, library, manual

intermediate step

machinery of life

© Laszlo Kajan, TUM
Protein synthesis

(a) Transcription

(b) Post-transcription

(c) Translation

(d) Post-translation

© Wikipedia

© Burkhard Rost (TU Munich)
Protein synthesis
Quiz

1. what is the smallest building block of life that can replicate?
 • protein - quarks - cells - organelles

2. different cells in typical human?
 • 20 - 200 - 400 - 1000

3. what are the parts of cells called?
 • cellular parts - organelles - organs - celluoplasts

4. which part of cells is called the “powerhouse”?
 • nucleus - Golgi apparatus - mitochondria - Endoplasmic reticulum

5. what part of a plant cell is involved with photosynthesis?
 • mitochondria - nucleus - smooth reticulum - chloroplast

6. what is mitosis?
 • cell death - cellular respiration - cell division - cellular communication

7. who first used the term cell?
 • Aristotle - Captain Hooke - Robert Hooke - James Watson

8. how many elements are found in amounts larger than trace amounts (0.01%) in our bodies?
 • 92 - 48 - 13 - 11

9. when communities of living things interact with non-living things they are called a ...
 • population - community - biosphere - ecosystem

10. the most common molecule in the human body is?

© Ask a Biologist (askabiologist.asu.edu)
Quiz

1. what is the smallest building block of life that can replicate?
 • protein - quarks - cells - organelles

2. different cells in typical human?
 • 20 - 200 - 400 - 1000

3. what are the parts of cells called?
 • cellular parts - organelles - organs - celluoplasts

4. which part of cells is called the “powerhouse”?
 • nucleus - Golgi apparatus - mitochondria - Endoplasmic reticulum

5. what part of a plant cell is involved with photosynthesis?
 • mitochondria - nucleus - smooth reticulum - chloroplast

6. what is mitosis?
 • cell death - cellular respiration - cell division - cellular communication

7. who first used the term cell?
 • Aristotle - Captain Hooke - Robert Hooke - James Watson

8. how many elements are found in amounts larger than trace amounts (0.01%) in our bodies?
 • 92 - 48 - 13 - 11

9. when communities of living things interact with non-living things they are called a ...
 • population - community - biosphere - ecosystem

10. the most common molecule in the human body is?

© Ask a Biologist (askabiologist.asu.edu)
Videos: YouTube / www.rostlab.org

THANKS:

Tim Karl + Jonas Reeb

Special lectures:
• Apr 15 - Andrea Schafferhans
• Nov 28: Arthur Dong
• Dec 03+05: Marco De Vivo/Marco Punta
• Dec 17+19: Andrea Schafferhans

No lecture:
• Apr 17/22 Easter
• May 01 Thu May day
• May 06 Tue Student assembly
• May 29 Thu Ascension day
• Jun 10 Tue Whitsun holidays
• Jun 19 Thu Corpus Christi

LAST lecture: July 1

Examen: July 3/8
• Makeup: Oct 21 - morning
Lecture plan (PP1: Structure)-generic

01: 2014/04/08 Tue: sorry
02: 2014/04/10 Thu: welcome: who we are
03: 2014/04/15 Tue: Intro I - acids/structure (Andrea Schafferhans)
04: 2014/04/17 Thu: SKIP: Easter vacation
05: 2014/04/22 Tue: SKIP: Easter vacation
06: 2014/04/24 Thu: Intro II - 3D comparisons
05: 2014/04/29 Tue: Alignment 1
07: 2014/05/01 Thu: SKIP: “May day” - (NOT to be confused with “m’aidez”)
08: 2014/05/06 Tue: SKIP: student assembly (SVV)
09: 2014/05/08 Thu: Alignment 2
10: 2014/05/13 Tue: Comparative modeling 1
11: 2014/05/15 Thu: Comparative modeling 2
12: 2014/05/20 Tue: Experimental structure determination
13: 2014/05/22 Thu: 3D -> 1D: Secondary structure assignment
14: 2014/05/27 Tue: 1D: Secondary structure prediction 1
15: 2014/05/29 Thu: SKIP: holiday (Ascension Day)
16: 2014/06/03 Tue: Normal mode analysis (Edda Kloppmann)
17: 2014/06/05 Thu: 1D: Secondary structure prediction 3
18: 2014/06/10 Tue: SKIP: Whitsun holidays
19: 2014/06/12 Thu: 1D: Transmembrane helix prediction
20: 2014/06/17 Tue: Nobel prize symposium
21: 2014/06/19 Thu: SKIP: Corpus Christi (Fronleichnam)
22: 2014/06/24 Tue: 1D: Transmembrane strand prediction, solvent accessibility
23: 2014/06/26 Thu: 2D prediction
24: 2014/07/01 Tue: 3D prediction/wrap up
25: 2014/07/03 Thu: examen, no lecture
26: 2014/07/08 Tue: examen, no lecture
27: 2014/07/10 Thu: no lecture
Exercises - topics

- presentations from teams
- each session involves:
 - presentation of team
 - wikipedia like page
 - programming snippet
Exercises - ECTS/score/admin

- final score: 60% exercises - 40% examen