title: Alignments

short title: alignments_1

lecture: Protein Prediction I - Protein Structure / Burkhard Rost, TUM, 2011 summer
Announcements

Videos: SciVee

www.rostlab.org

THANKS:
Tim Karl + Haitam Sohby

NO lectures:
Tue Jun 28
Thu Jun 28 ?

LAST lecture: Jul 7

Examen: Jul 12 (?), 10:30 (likely this room)
• Makeup: likely: October 13 - morning

CONTACT: Marlena Drabik assistant@rostlab.org

Let it go. Let it out. Let it all unravel. Let it free and it can be A path on which to travel.
Today: Secondary structure prediction 1

- LAST WEEKs
 - Secondary structure prediction

- THIS WEEK
 - Alignments and “reach of comparative modeling”

- NEXT WEEK
 - Marc Ofmann: Molecular Dynamics (MD)
 - Comparative modeling
Sequence comparisons: pairwise methods
Alignments

PAPI
OPA
Alignments

.PAPI
OPA..
Alignments

.PAPI
OPA..
.PAPA
Alignments

.PAPI
OPA..
.PAPA
.PAPU
.PIPI
Alignments: Steps to do

- goal: align two sequences

 GGQLAKEEAL
 EGQPVEVLP

- 2 do:
 - (1) Find optimal superposition of the two
 - (2) Define “optimal”
Alignment: Local vs. Global

- **compare:**
 - global: all residues aligned
 - local: best matches

- **GGQLAKEEAL**
- **EGQPVEVLP**
- **GGQLAKEEAL**
- **EGQ..PVEVLP**
- **GGQLAKEEAL**
- **EGQ..PVEVLP**
- **GGQLAKEEAL**
- **EGQ..PVEVL**
Alignment: Assumptions about meaning

What does this mean? GGQLAKEEAL EGQ.PVEVL
Alignment: Assumptions about meaning

- What does this mean?

- Historical interpretation
 (reason to start working on the problem):

 evolutionary relation

GGQLAKEEAL
EGQ.PVEVL
Meaning of “homology”?
Alignment: Assumptions about meaning

What does this mean? GGQLAKEEAL EGQ. PVEVL

Historical interpretation (reason to start working on the problem):

- evolutionary relation
- common ancestor
- homology
Dynamic programming: brute force
How to align sequences?

1. visually
How to align sequences?

- 1. visually
Dynamic programming: Global

GGQLAKEEAL
EGQPVEVL
Dynamic programming: Global

GGQLAKEEAL
EGQPVEVL

GGQLAKEEAL
EGQPVEVL
Dynamic programming: Global

GGQLAKEEAL
EGQPVEVL

GGQLAKEEAL
EGQPVEVL

GGQLAKEEAL
EGQPVEVL
Dynamic programming concept

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>Q</th>
<th>L</th>
<th>A</th>
<th>K</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming concept

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>Q</th>
<th>L</th>
<th>A</th>
<th>K</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Dynamic programming concept

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>Q</th>
<th>L</th>
<th>A</th>
<th>K</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>

GGQLAKEEAL

GQP..VEVL

GGQLAKEEAL

G.QP.VE.VL
2 of 2 better than 4 of 8?

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>Q</th>
<th>L</th>
<th>A</th>
<th>K</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Gap/Insertions: penalty

- linear gap penalty:

N gaps cost N

EGQ......PVEVLP <-> E.G.Q.P.V.EVLP
Gap/Insertions: penalty

- **linear gap penalty:**

 \[\text{N gaps cost N} \]

 \[\text{EGQ.....PVEVLP} \leftrightarrow \text{E.G.Q.P.V.EVLP} \]

- **idea of BLOCKS:**

How to enforce blocks in alignments?
Gap/Insertions: penalty

- **linear gap penalty:**

 N gaps cost N

 \[\text{EGQ....PVEVLP} \leftrightarrow \text{E.G.Q.P.V.EVLP} \]

- **affine gap penalty:**

 gap open
 gap extension (elongation)

 typical go=10 x ge
Dynamic programming: optimal alignment

- Global/no gap:
 SB Needleman and CD Wunsch 1970 J Mol Biol 48, 443-53
- Local/Gap:
 TF Smith and MS Waterman 1981 J Mol Biol 147, 195-197
Dynamic programming: optimal alignment

Pair of protein sequences

| U | GGQLAKEEAL |
| T | EGQPVEVL |

Optimal alignment (no gaps)

U	GGQLAKEEAL
T1	EVL
T2	EGQPVEVL

Optimal alignment (with gaps)

| U | GGQLAKEEAL |
| T | EGQP.VE.VL |

- **Global/no gap:**
 SB Needleman and CD Wunsch 1970 J Mol Biol 48, 443-53
- **Local/Gap:**
 TF Smith and MS Waterman 1981 J Mol Biol 147, 195-197

\[
SW = \sum_{k=l}^{L_{ali}} M_{U_kT_k} - Go \cdot N_{gap} - Ge \cdot (L_{gap} - N_{gap})
\]
Identity the best criterion?
Substitution matrices
Alignments in brief

>1bl8_A mol:protein length:97 Potassium Channel Protein
ALHWRAAGAATVLIVLLAGSYLAVLAERGAPGAQLIT
YPRALWWSVETATTGYPDLYPVTLWGRCAVVVMVAGITSFGLVTAALATWFVGREQ

>1orq_C mol:protein length:223 Potassium Channel
IGDVMEHPLVELGVSYAALLSVIVVVVECTMQLSGEYLVRLYVLVLVILYAWAYRAYKSGDPAGYVKKTLEY
PALVPAGLALIEGHLAGLGLFRLVRLRRFLRILHLHSRGSKFLSAIAADAADKIRFYHLFGAVMLTVLYGAFAIYIVEYPDPNSSIKSVFDALWWAVVTATTGYPDVPATIGKVIGIAVMLTGISAALTLLIGTVSNMFQKILV

Query= 1bl8_A mol:protein length:97 Potassium Channel Protein
(97 letters)

>1orq_C mol:protein length:223 Potassium Channel
Length = 223

Score = 58.5 bits (140), Expect = 4e-14
Identities = 26/72 (36%), Positives = 43/72 (59%)

Query: 21 GSYLAERGAPGACLITYPRALWWSVETATTGYPDLYPVTLWGRCAVVVMVAGITS 80
G++ E P ++ + ALWW+V TATTGYPD+ P T G+ + + VM+ GI++
Sbjct: 147 GAFFKIVVEYDPDNSSIKSVFDALWWAVVTATTGYPDVPATIGKVIGIAVMLTGISA 206

Query: 81 FGLVTAALATWF 92
L+ ++ F
Sbjct: 207 LTLLIGTVSNMF 218
Alignments in brief

>1bl8_A mol:protein length:97 Potassium Channel Protein
ALHWRAAGAATVLLVLLAGSYLAVLAERGAPGAQLITYPRALWWSVETATTTVGYGDLYPVTLWGRCVAVVVMA
GITSFGLVTAALATWFVGVREQ

>1orq_C mol:protein length:223 Potassium Channel
IGDVMELHPLVELGVYAAALLSVIVVVECTMQLSGEYLVRLYLDLILVLWADYAYRAYKSGDPAGYVKKTLEYIPALVPAGLLLIEGHLAGLFRILVRLLRFLRILLIHSRG
SKFLSAIAADAKIRFYHLFGAVMTVLYGAFAIYIVEYPDPNSSIKSVFDALWWAATTGVYGDPATPIGVKVI
GIAVMGLTGISALTLLIGTVSNMFQKHVL

Query= 1bl8_A mol:protein length:97 Potassium Channel Protein
(97 letters)

>1orq_C mol:protein length:223 Potassium Channel
Length = 223

Score = 58.5 bits (140), Expect = 4e-14
Identities = 26/72 (36%), Positives = 43/72 (59%)

Query: 21 GSYI AVLAERGAPGACQLITYPRALWWSVETATTTVGYGDLYPVTLWGRCVAVVVMA
G++ + E P + + + ALWW+V TATTVGYGD+ P T G+ + + VM+ GI++
Sbjct: 147 GAFAIYIVEYPDPNSSIKSVFDALWWAATTGVYGDPATPIGVKVI
GIAVMGLTGISALTLLIGTVSNMFQKHVL

Query: 81 FGLVTAALATWF 92
L+ ++ F
Sbjct: 207 LTLLIGTVSNMF 218

Scoring matrix

Algorithm to optimize score
Alignment: Substitution Matrix: PAM

PAM: Point Accepted Mutations (substitution matrix)

Margaret Oakley Dayhoff (1925-1983)

introduced 1978 based on 1572 observed mutations in 71 families of closely related (85% PIDE) proteins
Protein Atlas (Atlas of Protein Sequence and Structure)
(1st sequence: insulin: 1955 Fred Sanger, 1st structures: 1958: Perutz et al. (hemoglobin) / Kendrew et al. (myoglobin))

PAM1: 1 point mutation per hundred comparisons
PAMn=(PAM1)^n
BLOSUM

- BLOcks of amino acid SUbstitution Matrices
 Align only conserved regions
- compile log-odd ratios

\[S_{i,j} = \log \frac{p_i \cdot M_{i,j}}{p_i \cdot p_j} = \log \frac{M_{i,j}}{p_j} = \log \frac{\text{observed frequency}}{\text{expected frequency}} \]

- BLOSUM\(n\)=threshold at \(n\)% pairwise sequence identity

S Henikoff & Jorja Henikoff (1992)
PNAS 89:10915-9
Alignments: scoring matrix

C	S	T	P	A	G	N	D	E	Q	H	R	K	M	L	V	F	Y	W			
12	2	1	0	6	2	0	1	0	0	2	0	1	0	0	0	2	0	1	0	0	2
S	0	2	1	3	0	1	0	6	2	1	0	1	0	0	0	2	0	1	0	0	2
T	-2	1	3	0	1	0	6	2	1	0	1	0	0	0	2	0	1	0	0	2	0
P	-3	1	0	6	2	1	0	1	0	0	2	0	1	0	0	2	0	1	0	0	2
A	-2	1	1	2	0	1	0	6	2	1	0	1	0	0	0	2	0	1	0	0	2
G	-3	1	0	1	5	2	1	0	6	2	1	0	1	0	0	0	2	0	1	0	0
N	-4	1	0	-1	0	0	2	0	1	0	1	0	0	0	2	0	1	0	0	2	
D	-5	0	0	-1	0	1	2	4	0	1	0	0	0	0	0	2	0	1	0	0	
E	-5	0	0	-1	0	0	1	3	4	0	1	0	0	0	0	0	2	0	1	0	
Q	-5	-1	0	-1	0	-1	1	2	4	0	1	0	0	0	0	0	2	0	1	0	
H	-3	-1	0	-1	0	-2	2	1	1	3	0	0	0	0	0	0	0	0	0	0	
R	-4	0	-1	0	-2	3	0	1	-1	1	0	0	0	0	0	0	0	0	0	0	
K	-5	0	0	-1	0	-2	1	0	0	1	0	0	0	0	0	0	0	0	0	0	
M	-5	-2	-1	-2	-1	3	-2	0	0	6	0	0	0	0	0	0	0	0	0	0	
I	-2	-1	0	-2	-1	3	-2	0	0	6	0	0	0	0	0	0	0	0	0	0	
L	-6	-3	-2	-3	-2	4	0	-4	3	4	2	6	0	0	0	0	0	0	0	0	
V	-2	-1	0	-1	0	-1	2	-2	4	2	4	0	0	0	0	0	0	0	0	0	
F	-4	-3	-3	-5	-4	-5	-2	-4	5	0	1	2	-1	9	0	0	0	0	0	0	
Y	0	-3	-3	-5	-3	-7	-2	-4	4	0	-4	4	2	-1	1	-2	7	10	0	0	
W	8	-2	-5	-6	-6	-7	-4	-7	7	5	3	2	3	4	5	2	6	0	0	17	

Scoring Matrix
Alignments: scoring matrix

<table>
<thead>
<tr>
<th>C</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>-2</td>
</tr>
<tr>
<td>P</td>
<td>-3</td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
</tr>
<tr>
<td>G</td>
<td>-3</td>
</tr>
<tr>
<td>N</td>
<td>-4</td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
</tr>
<tr>
<td>E</td>
<td>-5</td>
</tr>
<tr>
<td>Q</td>
<td>-5</td>
</tr>
<tr>
<td>H</td>
<td>-3</td>
</tr>
<tr>
<td>R</td>
<td>-4</td>
</tr>
<tr>
<td>K</td>
<td>-5</td>
</tr>
<tr>
<td>M</td>
<td>-5</td>
</tr>
<tr>
<td>I</td>
<td>-2</td>
</tr>
<tr>
<td>L</td>
<td>-6</td>
</tr>
<tr>
<td>V</td>
<td>-2</td>
</tr>
<tr>
<td>F</td>
<td>-4</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>W</td>
<td>-8</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>S</td>
<td>T</td>
</tr>
<tr>
<td>P</td>
<td>A</td>
</tr>
<tr>
<td>G</td>
<td>N</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>Q</td>
</tr>
<tr>
<td>H</td>
<td>R</td>
</tr>
<tr>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>M</td>
<td>L</td>
</tr>
<tr>
<td>I</td>
<td>V</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td>W</td>
</tr>
</tbody>
</table>

Scoring Matrix

© Burkhard Rost (TU Munich)
Other substitution matrices

- BLOSUM-62 took the day
- many more (sequence based):
 - GONNET
 - McLachlan
 - Claverie
- structure based
 - PHAT, SLIM
 - STROMA, SDM, HSDM, SM_SAUSAGE, AGAPE
- function based
- for threading/fold recognition
- asf.
Interactive software tool

Ignacio Ibarra & Francisco Melo:

Interactive software tool to comprehend the calculation of optimal sequence alignments with dynamic programming

Bioinformatics, 2010, in press

http://melolab.org/sat
Dynamic programming

- time used?
- how to choose parameters?
Alignment: hashing (fast & dirty)
BLAST: fast matching of single ‘words’

TTYKLILNGKTLKGETTTEAVDAATAAEKVFKQYANDNGVDGEWTYDDATKTFTVTEK
TTYKLILLLLLLLLLLLLLLLLLLLAWTVEKAFKTFAAAAAAAAAAWTVEKAFKTFAAAAA

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

TTYKLILNGKTLKGETTTEAVDAATAEKFQYANDNGVDGEWTYDDATKTFTVTEK
TTYKLILLLLLLLLLLLLAWTWVEKAFKTFAAAATWVEKAFKTFAAA

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

TTYKLIILNGKTLKGETTTTEAVDAATAEKFQYANDNGVDGEWTYDDATKTFTVTEK
TTYKLIILLLLLLLLLLLLLLLAWTVEKAFKTFAAAAAAAAAAWTVEKAFKTFAAAAA

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

TTYKLI LNLGLKTLKGETTTEAVDAATAE}KVFQYANDNGVDGEWTYDDATKTFVTEK
TTYKLILLLLLLLLLLLLLLLLAWTVEKAFKTFFAAAAAAAAWTVEKAFKTFFAAAA

Default “word” size for “seeds” = 3
Examples for hashing

- FASTA (extension of FASTN/FASTP)
 DJ Lipman & WR Pearson (1985)
 Science 227: 1435-41

- BLAST
 Basic Local Alignment Search Tool
 SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman (1990) JMB
 215:403-10
BLAST: fast matching of single ‘words’

TTYKLILNGKTLKGETTTEAVDAATAEKFQYANDNGVDGEWTYDDATKTFTVTEK
TTYKLLLLLLLLLLLLLLLLAWTVEKAFKTFAAAAAAAAAAWTVEKAFKTFAAAAA

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

TTYKLIILNGKTLKGETTTEAVDAATAEKEVFQYANDNGVDGEWTYDDATKTFVTVEKT
TTYKLIILLLLLLLLLLLLLLAWTVEKAFKTFAAAAAATWVEKAFKTFaaaaa

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

Default “word” size for “seeds” = 3
BLAST: fast matching of single ‘words’

```
TTYKLILNGKTLKGETTTEAVAATAEKVFKQYANDNGVGEWTYDDATKTFVTTEK
TTYKLILLLLLLLALLLLAWTVEKAFKTFAAAAAAAAWTVEKAFKTFAAAAA
```

```
TTYKLIL  ?
TTYKLIL  ?
```

```
AATAEKVFKQYA
AWTVEKAFKTF
```

```
WTYDDATKTF
WTLVEKAFKTF
```

Default “word” size for “seeds” = 3
the major challenge for word search algorithms is to get the statistics right
Significance of match (e.g. BLAST E-values)
Different approaches for background

- SEARCHSEQ
 - permutations of SEARCHSEQ

 FASTA

 - pre-compile distribution for entire database

 BLAST
How accurate are pairwise alignments?
Annotation transfer

similar sequence \Rightarrow similar function

similar sequence \Rightarrow similar structure
Zones

Midnight Zone

Twilight Zone

Save Zone

sequences similar

structures similar
How to assess alignment accuracy?
How to assess alignment accuracy?
All-vs-all: PDB

1D = sequence alignment
All-vs-all: PDB

3D = structural alignment

1D = sequence alignment
All-vs-all: PDB

3D = structural alignment

1D = sequence alignment

<0.2nm rmsd — SAME 3D
in between — ignore
>0.5nm rmsd — DIFFER in 3D
PDB all-against-all ok?

proteins of known 3D structure (PDB)
Databases biased: MUST remove bias!

- Proteins of known 3D structure (PDB)
- Sequence-unique subset

Proteins of known 3D structure (PDB) should not overlap with sequence-unique subset.
Sequence conservation of protein structure

B Rost 1999 Prot Engin 12, 85-94
Sequence conservation of protein structure

B Rost *Prot Engin* **12**, 85-94
Structure prediction using homology

>P1
MEDLVSVGITKHAEVEELARFESDEAVRIDGEVESFRGLSGL
VLLQTSnrveviasgardraeeelglihhdmvkgseavrhlfrvasgle8mvgqeii1rqvkaydraarlgtldealkiv
frrainlgkrrereetrisegvasi

>P2
METLILITQEEVESLISMDEAMNVEAPFLYALGKAQMPFKV
YLEFEKGDLORAPLHGAYGALKWNHPGDPKGLPVTMAL
HILNSPETGFPPLAVMDATYTTSLRTGAGGIAAKYL

Tuesday June 7, 2011
Structure prediction using homology

Tuesday June 7, 2011
Structure prediction using homology

Figure A

- **Percentage of identical residues**
- **Number of residues aligned**

Figure B

- **Percentage of identical residues**
- **Number of residues aligned**

Query

- P1: MEDLVSVG10HKEAEVEELEKAFESDEAVR7D1VESFG1SGS
 - VLLQTNSRVEVTASDGR5G1REDLH5DAMV5RG5AEV5H
 - LFRVASGLESMVGEQ5ILR1QV5KAD5RAARLGT1LDEALKIV
 - FRRAINLKRAREETR1SEGA5VI

- P2: METLILTQEEVESL1SMDA5MNAVEEAFRLY1GKAQ5PPK5V
 - YLEF5E5G5D5R5PA5H4LM5Y5G5L5K5WN5S5PH5NP5D5K5L5PT55MAL
 - NIL5S5PET5G5F5P5L5AV5MD5AT5T5S5L5RT5G5A5GG5IA5K

Alignments

- Score = 83.2 bits (205), Expect = 9e-17
- Identities = 18/101 (X%), Positives = 36/101 (35%), Gaps = 2/101 (1%)
- Query: 111 AAGGIAAKLARKNSSVFG1GCTQAYFQOLEALR5VFD1GEV5KAYD5VREKAAKF 170
 - AA +A +L + +G +G +L + V + +A +
- Sbjct: 153 AAVELAER5L5H5D5K5T5V5L5V5G5A5GM5K5T5V5A5K5L5V5D5R55VA5LV5N5R5V5E5RA5VEL 211
 - A5VELA5ERE5L5H5D5K5T5V5L5V5G5A5GM5K5T5V5A5K5L5V5D5R55VA5LV5N5R5V5E5RA5VEL

- Query: 171 EDRG15ASV5P5AE5EASSCDV5L5VTTTP55P5K5VV5K5AE5W5VE5GT 211
 - + +R DV5V5+ T + PV5 + V E
- Sbjct: 212 GGEAVRF5DE5-L5DHL5AR5SDV5V5S5ATA5AP5HP5V5I5H5DD5V5REAL 251

Remarks

- Structure prediction using homology
Structure prediction using homology

Tuesday June 7, 2011
Structure prediction using homology

Score = 33.9 bits (77), Expect = 0.068
Identities = 14/58 (y%), Positives = 28/58 (48%), Gaps = 2/58 (3%)
Query: 178 SVQPAAEASRCVLVTTPSRKPVKAEWVEEGTHINAIGADGPKQELD-VEILKKA 234
+ EE ++ D+LV T + +VK EW++ G + G + ++ E ++A
Sbjct: 198 TAHLDDEEVNKGDLVATGQPE-MVKGEWIKPGAIVIDCGINYKVVDAYDEAKERA 254

Score = 33.9 bits (77), Expect = 0.068
Identities = 14/58 (y%), Positives = 28/58 (48%), Gaps = 2/58 (3%)

Query: 178 SVQPAEEASRCDVLTTPSRFVKAEBVEEGTHINAIGADGPGQELD-VEILKKA 234
+ EE ++ D+LV T + +VK EW++ G + G + ++ E ++A
Sbjct: 198 TMLDEEVNKDILVATGQPE-MVKGEIKPGAIIDCGINYKVGDAVYDEAKERA 254

Structure prediction using homology

Tuesday June 7, 2011
Sequence conservation of protein structure

B Rost 1999 Prot Engin 12, 85-94

© Burkhard Rost (TU Munich)
Sequence conservation of protein structure

B Rost 1999 Prot Engin 12, 85-94
How to estimate performance from the curves?
How to estimate performance from the curves?
Distance from new HSSP-curve

Sequence identity implies structural similarity!

Don't know region

Distance from curve = +10

Distance from curve = -10

B Rost 1999 Prot Engin 12, 85-94
Distance from new HSSP-curve

B Rost 1999 Prot Engin 12, 85-94
Twilight zone = false positives explode!!

Percentage sequence identity

Number of protein pairs

Distance from HSSP threshold

B Rost 1999 Prot Engin 12, 85-94

© Burkhard Rost (TU Munich)
Twilight zone = false positives explode!!

Percentage sequence identity

Number of protein pairs

Distance from HSSP threshold

B Rost 1999 Prot Engin 12, 85-94
Detecting true hits in Twilight zone

Percentage of cumulative true positives

Distance from threshold

old HSSP

sim

ide

10%

similarity-larger-than-identity

they-dont-know-what-they-do only sequence identity

B Rost 1999 Prot Engin 12, 85-94

© Burkhard Rost (TU Munich)

Tuesday June 7, 2011
Finding similar structures in Twilight zone

B Rost 1999 Prot Engin 12, 85-94
Accuracy vs. Coverage

ACCURACY = how many of the correct proteins were found?

COVERAGE = how many of the proteins found are correct?
BLAST is not enough ...

they-dont-know-what-they-do
only sequence identity

B Rost 1999 Prot Engin 12, 85-94
Threshold in percentage sequence identity

- PIDE
- >100, >30%
- new HSSP
Threshold in percentage sequence identity
So far: pairwise - anything more 2 do?
Triangle beyond reach

- protein A
- protein B
- protein C
Sequence Space Hopping

protein A
seq_x
seq_y
sel_x

protein B
anb_x
unk_x
unk_y

protein C
cal_x
cal_y

© Burkhard Rost (TU Munich)
Success through sequence space hopping

![Graph showing percentage sequence identity and cumulative % of true pairs against distance from threshold.]

- The x-axis represents the distance from the threshold.
- The y-axis shows the percentage sequence identity.
- The graph includes two sequences: 'ide' and 'old', with their respective plots.
- The cumulative % of true pairs increases as the distance from the threshold decreases.

Tuesday June 7, 2011
Sequence comparisons:
multiple alignment
Multiple alignments

- **Dynamic programming?**
- for 3 sequences: $O(N_1 \times N_2 \times N_3)$
- NP-complete (L Wang & T Jiang (1994) JCB 1: 337-48)

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>G</th>
<th>Q</th>
<th>L</th>
<th>A</th>
<th>K</th>
<th>E</th>
<th>E</th>
<th>A</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
</tbody>
</table>
Multiple alignments

- Dynamic programming?
 for 3 sequences: $O(N_1 \times N_2 \times N_3)$
 NP-complete (L Wang & T Jiang (1994) JCB 1: 337-48)

- hack 1:
 dynamic programming: pairwise, only space in vicinity of intersection searched n-wise
Multiple alignments

- **Dynamic programming?**
 for 3 sequences: \(O(N_1 \times N_2 \times N_3) \)
 NP-complete (L Wang & T Jiang (1994) JCB 1: 337-48)

- **hack 1:**
 dynamic programming: pairwise, only space in vicinity of intersection searched n-wise

- **hack 2:**
 map to tree / pairwise
 Russell Doolittle, UCSD
Multiple alignment: progressive 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>GGQLAKEEAL</th>
<th>GGQLAKDEAL</th>
<th>GGQIAKDEAL</th>
<th>GGQIAKDEAI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>90</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiple alignment: progressive

Step 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1:
- GGQLAKEEAL
- GGQLAKDEAL
- GGQIAKDEAL
- GGQIAKDEAI

- ggqlakeeal
Multiple alignment: progressive

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>90</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1
- GGQLAKEEAL
- GGQLAKDEAL
- ggqlakeeal

Step 2
- GGQIAKDEAL
- GGQIAKDEAI
- ggqiakdeal
Multiple alignment: progressive 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1
- GGQLAKEEAL
- GGQLAKDEAL
- ggqlakeeal

Step 2
- GGQIAKDEAL
- GGQIAKDEAI
- ggqiakdeai

Step 3
- GGQIAKDEAL
- GGQIAKDEAI
- ggqiakdeal

Tuesday June 7, 2011
Multiple alignment: progressive 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>90</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1

GGQLAKEEAL
GGQLAKDEAL
GGQIAKDEAI

ggqlakeeal
Multiple alignment: progressive 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>90</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1
- GGQLAKEEAL
- GGQLAKDEAL
- ggqlakeeal

Step 2
- GGQLAKEEAL
- GGQLAKDEAL
- GQQIAKDEAI
Multiple alignment: progressive 2

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90</td>
<td>80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>90</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 1
- GGQLAKEEAL
- GGQLAKDEAL
- ggqlakeeal

Step 2
- ggqlakeeal
- GGQIAKDEAL
- ggqlakeeal

Step 3
- ggqlakeeal
- GGQIAKDEAI
- GGQIAKDEAI
Announcements

Videos: SciVee
www.rostlab.org

THANKS:
Tim Karl + Haitam Sohby

NO lectures:
Tue Jun 28
Thu Jun 28?

LAST lecture: Jul 7

Examen: Jul 12 (?), 10:30 (likely this room)
• Makeup: likely: October 13 - morning

CONTACT: Marlena Drabik assistant@rostlab.org

© Burkhard Rost (TU Munich)