A large-scale evaluation of computational protein function prediction.

TitleA large-scale evaluation of computational protein function prediction.
Publication TypeJournal Article
Year of Publication2013
AuthorsRadivojac, P, Clark, WT, Oron, TRonnen, Schnoes, AM, Wittkop, T, Sokolov, A, Graim, K, Funk, C, Verspoor, K, Ben-Hur, A, Pandey, G, Yunes, JM, Talwalkar, AS, Repo, S, Souza, ML, Piovesan, D, Casadio, R, Wang, Z, Cheng, J, Fang, H, Gough, J, Koskinen, P, Törönen, P, Nokso-Koivisto, J, Holm, L, Cozzetto, D, Buchan, DWA, Bryson, K, Jones, DT, Limaye, B, Inamdar, H, Datta, A, Manjari, SK, Joshi, R, Chitale, M, Kihara, D, Lisewski, AM, Erdin, S, Venner, E, Lichtarge, O, Rentzsch, R, Yang, H, Romero, AE, Bhat, P, Paccanaro, A, Hamp, T, Kaßner, R, Seemayer, S, Vicedo, E, Schaefer, C, Achten, D, Auer, F, Boehm, A, Braun, T, Hecht, M, Heron, M, Hönigschmid, P, Hopf, TA, Kaufmann, S, Kiening, M, Krompass, D, Landerer, C, Mahlich, Y, Roos, M, Björne, J, Salakoski, T, Wong, A, Shatkay, H, Gatzmann, F, Sommer, I, Wass, MN, Sternberg, MJE, Škunca, N, Supek, F, Bošnjak, M, Panov, P, Džeroski, S, Šmuc, T, Kourmpetis, YAI, van Dijk, ADJ, Braak, CJF ter, Zhou, Y, Gong, Q, Dong, X, Tian, W, Falda, M, Fontana, P, Lavezzo, E, Di Camillo, B, Toppo, S, Lan, L, Djuric, N, Guo, Y, Vucetic, S, Bairoch, A, Linial, M, Babbitt, PC, Brenner, SE, Orengo, C, Rost, B, Mooney, SD, Friedberg, I
JournalNat Methods
Volume10
Issue3
Pagination221-7
Date Published2013 Mar
ISSN1548-7105
KeywordsAlgorithms, Animals, Computational Biology, Databases, Protein, Exoribonucleases, Forecasting, Humans, Molecular Biology, Molecular Sequence Annotation, Proteins, Species Specificity
Abstract

Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based critical assessment of protein function annotation (CAFA) experiment. Fifty-four methods representing the state of the art for protein function prediction were evaluated on a target set of 866 proteins from 11 organisms. Two findings stand out: (i) today's best protein function prediction algorithms substantially outperform widely used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is considerable need for improvement of currently available tools.

DOI10.1038/nmeth.2340
Alternate JournalNat. Methods
PubMed ID23353650
PubMed Central IDPMC3584181
Grant ListBB/F020481/1 / / Biotechnology and Biological Sciences Research Council / United Kingdom
BB/G022771/1 / / Biotechnology and Biological Sciences Research Council / United Kingdom
BB/K004131/1 / / Biotechnology and Biological Sciences Research Council / United Kingdom
GM066099 / GM / NIGMS NIH HHS / United States
GM075004 / GM / NIGMS NIH HHS / United States
GM079656 / GM / NIGMS NIH HHS / United States
GM093123 / GM / NIGMS NIH HHS / United States
GM097528 / GM / NIGMS NIH HHS / United States
HG004028 / HG / NHGRI NIH HHS / United States
LM00945102 / LM / NLM NIH HHS / United States
LM009722 / LM / NLM NIH HHS / United States
R01 GM060595 / GM / NIGMS NIH HHS / United States
R01 GM066099 / GM / NIGMS NIH HHS / United States
R01 GM071749 / GM / NIGMS NIH HHS / United States
R01 GM071749 / GM / NIGMS NIH HHS / United States
R01 GM075004 / GM / NIGMS NIH HHS / United States
R01 GM079656 / GM / NIGMS NIH HHS / United States
R01 GM093123 / GM / NIGMS NIH HHS / United States
R01 GM097528 / GM / NIGMS NIH HHS / United States
R01 LM009722 / LM / NLM NIH HHS / United States
R13 HG006079 / HG / NHGRI NIH HHS / United States
R13 HG006079-01A1 / HG / NHGRI NIH HHS / United States
U54 HG004028 / HG / NHGRI NIH HHS / United States